Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202381

RESUMO

Planning long-term space flights necessarily includes issues of providing food for the crew. One of the areas of research is the development of technologies for independent production of food by the crew. Extensive research on lettuce has confirmed that the "space production" of lettuce is not inferior to that on Earth, even in the absence of gravity, but the same deep understanding of the quality of grain crops has not yet been achieved. Therefore, the goal of our work is to establish whether the conditions for growing wheat in outer space without gravity affect the weight and basic parameters of the grain, and whether this leads to increased asymmetry of the kernel and distortion of the starch composition. The objects of the study were wheat (Triticum aestivum L.) kernels of the Super Dwarf cultivar. Of which, 100 kernels matured in outer space conditions in the Lada growth chamber on the International Space Station (ISS), and 85 kernels of the control wheat grown in a similar growth chamber under terrestrial conditions. It has been established that kernels from ISS have significant differences to a smaller extent in weight, area, length, and width of the kernel. However, the kernels under both conditions were predominantly large (the average weight of a kernel in space is 0.0362 g, and in terrestrial conditions-0.0376 g). The hypothesis that the level of fluctuating asymmetry will increase in outer space was not confirmed; significant differences between the options were not proven. In general, the kernels are fairly even (coefficients of variation for the main parameters of the kernel are within 6-12%) and with a low or very low level of asymmetry. The length of starch granules of type A in filled and puny kernels is significantly greater in kernels from ISS than in the control, and in terms of the width of starch granules B and roundness indices, both experimental variants are the same. It can be assumed that the baking qualities of earthly kernels will be slightly higher, since the ratio of type B starch granules to type A is 5-8% higher than on the ISS. Also, the width of the aleurone layer cells in mature kernels was significantly inferior to the result obtained on Earth. The work proposes a new method for establishing the asymmetry of kernels without a traumatic effect (in early works, it was supposed to study asymmetry in transverse sections of the kernels). Perhaps this will make it possible to further develop a computer scanning program that will determine the level of asymmetry of the wheat fruit.

2.
Life (Basel) ; 12(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35054440

RESUMO

This work is a review of the experiments carried out in the Russian segment of the ISS (inside and outside) from 2005 to 2016 on the effect of the space flight factor on the resting stages of organisms. In outer space, ultraviolet, a wide range of high and low temperatures, cosmic radiation, altered gravity, modified electromagnetic field, vacuum, factors of technical origin, ultrasound, microwave radiation, etc. and their combination determine the damaging effect on living organisms. At the same time, biological dormancy, known in a wide range of bacteria, fungi, animals and plants, allows them to maintain the viability of their dormant stages in extreme conditions for a long time, which possibly allows them to survive during space flight. From 2005 to 2016, the resting stages (propagules) of micro- and multicellular organisms were tested on the ISS to assess their ability to survive after prolonged exposure to the conditions of open space and space flight. Among the more than 40 species studied, about a third were dormant stages of aquatic organisms (eggs of cyprinodont fish, daphnia embryos, resting eggs of fairy shrimps, tadpole shrimps, copepods and ostracods, diapausing larvae of dipterans, as well as resting cysts of algae). The experiments were carried out within the framework of four research programs: (1) inside the ISS with a limited set of investigated species (Akvarium program); (2) outside the station in outer space without exposure to ultraviolet radiation (Biorisk program); (3) under modified space conditions simulating the surface of Mars (Expose program); and (4) in an Earth-based laboratory where single-factor experiments were carried out with neutron radiation, modified magnetic field, microwave radiation and ultrasound. Fundamentally new data were obtained on the stability of the resting stages of aquatic organisms exposed to the factors of the space environment, which modified the idea of the possibility of bringing Earth life forms to other planets with spacecraft and astronauts. It also can be used for creating an extraterrestrial artificial ecosystem and searching for extraterrestrial life.

3.
Life (Basel) ; 9(4)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31717710

RESUMO

The long-term autonomous existence of man in extraterrestrial conditions is associated with the need to cultivate plants-the only affordable and effective means for both providing oxygen and CO2 utilization, and providing one of the most habitual and energetically valuable products: plant food. In this study, we analyzed the results of the space odyssey of wheat and compared the morphological features of parental grains harvested from soil grown wheat plants, the grains obtained from plants grown in a specialized device for plant cultivation-the "Lada" space greenhouses during space flight in the ISS, and the grains obtained from plants in the same device on Earth. The seeds obtained under various conditions were studied using scanning electron microscopy. We studied the mutual location of the surface layers of the kernel cover tissues, the structural features of the tube and cross cells of the fruit coat (pericarp), and the birsh hairs of the kernels. It was found that the grains obtained under wheat plants cultivation on board of the ISS in near space had some specific differences from the parental, original grains, and the grains obtained from plants grown in the "Lada" greenhouse in ground conditions. These changes were manifested in a shortening of the birsh hairs, and a change in the size and relative arrangement of the cells of the kernel coat. We suggest that such changes are a manifestation of the sensitivity of the cytoskeleton reorganization systems and water exchange to the influence of particular physical conditions of space flight (microgravity, increased doses of radiation, etc.). Thus, the revealed changes did not hinder the wheat grains production "from seed to seed", which allows the cultivation of this crop in stable life support systems in near earth orbit.

4.
Biomed Res Int ; 2018: 4549294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627557

RESUMO

The ontogenesis and reproduction of plants cultivated aboard a spacecraft occur inside the unique closed ecological system wherein plants are subjected to serious abiotic stresses. For the first time, a comparative molecular cytogenetic analysis of Pisum sativum L. (Fabaceae) grown on board the RS ISS during the Expedition-14 and Expedition-16 and also plants of their succeeding (F1 and F2) generations cultivated on Earth was performed in order to reveal possible structural chromosome changes in the pea genome. The karyotypes of these plants were studied by multicolour fluorescence in situ hybridization (FISH) with five different repeated DNA sequences (45S rDNA, 5S rDNA, PisTR-B/1, microsatellite motifs (AG)12, and (GAA)9) as probes. A chromosome aberration was revealed in one F1 plant. Significant changes in distribution of the examined repeated DNAs in karyotypes of the "space grown" pea plants as well as in F1 and F2 plants cultivated on Earth were not observed if compared with control plants. Additional oligo-(GAA)9 sites were detected on chromosomes 6 and 7 in karyotypes of F1 and F2 plants. The detected changes might be related to intraspecific genomic polymorphism or plant cell adaptive responses to spaceflight-related stress factors. Our findings suggest that, despite gradual total trace contamination of the atmosphere on board the ISS associated with the extension of the space station operating life, exposure to the space environment did not induce serious chromosome reorganizations in genomes of the "space grown" pea plants and generations of these plants cultivated on Earth.


Assuntos
Pisum sativum/genética , Estresse Fisiológico/genética , Aberrações Cromossômicas , Cromossomos de Plantas/genética , Citogenética/métodos , DNA Ribossômico/genética , Cariótipo , Cariotipagem/métodos , Repetições de Microssatélites/genética , Voo Espacial/métodos
5.
BMC Plant Biol ; 14: 4, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393219

RESUMO

BACKGROUND: Spaceflight environment have been shown to generate reactive oxygen species (ROS) and induce oxidative stress in plants, but little is known about the gene expression of the ROS gene network in plants grown in long-term spaceflight. The molecular response and adaptation to the spaceflight environment of Mizuna plants harvested after 27 days of cultivation onboard the International Space Station (ISS) were measured using genome-wide mRNA expression analysis (mRNA-Seq). RESULTS: Total reads of transcripts from the Mizuna grown in the ISS as well as on the ground by mRNA-Seq showed 8,258 and 14,170 transcripts up-regulated and down-regulated, respectively, in the space-grown Mizuna when compared with those from the ground-grown Mizuna. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. RbohD and RbohF genes were up-regulated preferentially in NADPH oxidase genes, which produce ROS. CONCLUSIONS: This large-scale transcriptome analysis revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna. Among transcripts altered in expression by space conditions, some were common genes response to abiotic and biotic stress. Furthermore, certain genes were exclusively up-regulated in Mizuna grown on the ISS. Surprisingly, Mizuna grew in space normally, as well as on the ground, demonstrating that plants can acclimate to long-term exposure in the spaceflight environment by reprogramming the expression of the ROS gene network.


Assuntos
Brassica rapa/metabolismo , Voo Espacial , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo
6.
Biosci Biotechnol Biochem ; 74(7): 1479-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20622437

RESUMO

The gene expression and enzyme activity of superoxide dismutase, catalase, and ascorbate peroxidase in the space-grown barley were not significantly different from those of the ground-grown barley. Cu2+ reducing and radical scavenging activities in an extract of the space-grown barley were lower than those of the ground-grown barley by 0.7 fold, suggesting that the space environment does not induce oxidative stress, and reduces antioxidant capacity in plants.


Assuntos
Antioxidantes/metabolismo , Meio Ambiente Extraterreno , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Estresse Oxidativo , Congelamento , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Hordeum/genética , Hordeum/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...