Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 154(12): 124311, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810704

RESUMO

An infrared absorption spectroscopy study of the endohedral water molecule in a solid mixture of H2O@C60 and C60 was carried out at liquid helium temperature. From the evolution of the spectra during the ortho-para conversion process, the spectral lines were identified as para-H2O and ortho-H2O transitions. Eight vibrational transitions with rotational side peaks were observed in the mid-infrared: ω1, ω2, ω3, 2ω1, 2ω2, ω1 + ω3, ω2 + ω3, and 2ω2 + ω3. The vibrational frequencies ω2 and 2ω2 are lower by 1.6% and the rest by 2.4%, as compared to those of free H2O. A model consisting of a rovibrational Hamiltonian with the dipole and quadrupole moments of H2O interacting with the crystal field was used to fit the infrared absorption spectra. The electric quadrupole interaction with the crystal field lifts the degeneracy of the rotational levels. The finite amplitudes of the pure v1 and v2 vibrational transitions are consistent with the interaction of the water molecule dipole moment with a lattice-induced electric field. The permanent dipole moment of encapsulated H2O is found to be 0.50 ± 0.05 D as determined from the far-infrared rotational line intensities. The translational mode of the quantized center-of-mass motion of H2O in the molecular cage of C60 was observed at 110 cm-1 (13.6 meV).

2.
Angew Chem Int Ed Engl ; 60(12): 6791-6798, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340439

RESUMO

Hyperpolarization-enhanced magnetic resonance imaging can be used to study biomolecular processes in the body, but typically requires nuclei such as 13 C, 15 N, or 129 Xe due to their long spin-polarization lifetimes and the absence of a proton-background signal from water and fat in the images. Here we present a novel type of 1 H imaging, in which hyperpolarized spin order is locked in a nonmagnetic long-lived correlated (singlet) state, and is only liberated for imaging by a specific biochemical reaction. In this work we produce hyperpolarized fumarate via chemical reaction of a precursor molecule with para-enriched hydrogen gas, and the proton singlet order in fumarate is released as antiphase NMR signals by enzymatic conversion to malate in D2 O. Using this model system we show two pulse sequences to rephase the NMR signals for imaging and suppress the background signals from water. The hyperpolarization-enhanced 1 H-imaging modality presented here can allow for hyperpolarized imaging without the need for low-abundance, low-sensitivity heteronuclei.

3.
J Chem Phys ; 150(6): 064315, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769970

RESUMO

The singlet state of nuclear spin-1/2 pairs is protected against many common relaxation mechanisms. Singlet order, which is defined as the population difference between the nuclear singlet and triplet states, usually decays more slowly than the nuclear magnetization. Nevertheless, some decay mechanisms for nuclear singlet order persist. One such mechanism is called scalar relaxation of the second kind (SR2K) and involves the relaxation of additional nuclei ("third spins") which have scalar couplings to the spin-1/2 pair. This mechanism requires a difference between the couplings of at least one third spin with the two members of the spin-1/2 pair, and depends on the longitudinal relaxation time of the third spin. The SR2K mechanism of nuclear singlet relaxation has previously been examined in the case where the relaxation rate of the additional spins is on the time scale of the nuclear Larmor frequency. In this paper, we consider a different regime, in which the longitudinal relaxation of the third spins is on a similar time scale to the J-coupling between the members of the spin pair. This regime is often encountered when the spin-1/2 pair has scalar couplings to nearby deuterium nuclei. We show that the SR2K mechanism may be suppressed in this regime by applying a radiofrequency field which is resonant either with the members of the spin pair, or with the third spins. These phenomena are analyzed theoretically and by numerical simulations, and demonstrated experimentally on a diester of [13C2, 2H2]-labeled fumarate in solution.

4.
J Biomol NMR ; 69(4): 197-205, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29116557

RESUMO

Resonance assignment is the first stage towards solving the structure of a protein. This is normally achieved by the employment of separate inter and intra residue experiments. By utilising the mixed rotation and rotary recoupling (MIRROR) condition it is possible to double the information content through the efficient bidirectional transfer of magnetization from the CO to its adjacent Cα and the Cα of the subsequent amino acid. We have incorporated this into a 3D experiment, a 3D-MIRROR-NCOCA, where correlations present in the 3D spectrum permit the sequential assignment of the protein backbone from a single experiment as we have demonstrated on a microcrystalline preparation of GB3. Furthermore, the low-power requirements of the MIRROR recoupling sequence facilitate the development of a low-power 3D-NCOCA experiment. This has enabled us to realise significant reductions in acquisition times, allowing the acquisition of a single 3D-NCOCA spectrum suitable for a full backbone resonance assignment of GB3 in less than 24 h.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
5.
Philos Trans A Math Phys Eng Sci ; 371(1998): 20110627, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918709

RESUMO

The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

6.
Philos Trans A Math Phys Eng Sci ; 371(1998): 20110631, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918713

RESUMO

Hydrogen is one of the few molecules that has been incarcerated in the molecular cage of C60 to form the endohedral supramolecular complex H2@C60. In this confinement, hydrogen acquires new properties. Its translation motion, within the C60 cavity, becomes quantized, is correlated with its rotation and breaks inversion symmetry that induces infrared (IR) activity of H2. We apply IR spectroscopy to study the dynamics of hydrogen isotopologues H2, D2 and HD incarcerated in C60. The translation and rotation modes appear as side bands to the hydrogen vibration mode in the mid-IR part of the absorption spectrum. Because of the large mass difference of hydrogen and C60 and the high symmetry of C60 the problem is almost identical to a vibrating rotor moving in a three-dimensional spherical potential. We derive potential, rotation, vibration and dipole moment parameters from the analysis of the IR absorption spectra. Our results were used to derive the parameters of a pairwise additive five-dimensional potential energy surface for H2@C60. The same parameters were used to predict H2 energies inside C70. We compare the predicted energies and the low-temperature IR absorption spectra of H2@C70.

7.
Philos Trans A Math Phys Eng Sci ; 371(1998): 20120102, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23918716

RESUMO

We report a solid-state NMR study of the anisotropic nuclear spin interactions in H2O@C60 at room temperature. We find evidence of significant dipole-dipole interactions between the water protons, and also a proton chemical shift anisotropy (CSA) interaction. The principal axes of these interaction tensors are found to be perpendicular. The magnitude of the CSA is too large to be explained by a model in which the water molecules are partially aligned with respect to an external axis. The evidence indicates that the observed CSA is caused by a distortion of the geometry or electronic structure of the fullerene cages, in response to the presence of the endohedral water.

8.
J Magn Reson ; 234: 90-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851025

RESUMO

Dynamic nuclear polarization (DNP) of (15)N2O, known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ∼1.5 K and 5 T. Both (15)N polarization and intermolecular dipolar broadening are strongly affected by the sample's thermal history, indicating spontaneous formation of N2O clusters. In situ (15)N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two (15)N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. (15)N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies (10.2±2.2)% polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute (15)N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal.


Assuntos
Óxido Nitroso/química , Teorema de Bayes , Intervalos de Confiança , Indicadores e Reagentes , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Modelos Químicos , Isótopos de Nitrogênio , Reprodutibilidade dos Testes , Solventes
9.
Magn Reson Med ; 66(4): 1177-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21928358

RESUMO

The development of hyperpolarized tracers has been limited by short nuclear polarization lifetimes. The dominant relaxation mechanism for many hyperpolarized agents in solution arises from intramolecular nuclear dipole-dipole coupling modulated by molecular motion. It has been previously demonstrated that nuclear spin relaxation due to this mechanism can be removed by storing the nuclear polarization in long-lived, singlet-like states. In the case of N(2)O, storing the polarization of the nitrogen nuclei has been shown to substantially increase the polarization lifetime. The feasibility of utilizing N(2)O as a tracer is investigated by measuring the singlet-state lifetime of the N(2)O when dissolved in a variety of solvents including whole blood. Comparison of the singlet lifetime to longitudinal relaxation and between protonated and deuterated solvents is consistent with the dominance of spin-rotation relaxation, except in the case of blood.


Assuntos
Óxido Nitroso/sangue , Óxido Nitroso/química , Ressonância Magnética Nuclear Biomolecular/métodos , Tecido Adiposo/química , Animais , Gansos , Magnetismo , Ratos , Ratos Sprague-Dawley , Soluções , Solventes/química
10.
J Chem Phys ; 135(11): 114511, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21950875

RESUMO

We report on the dynamics of two hydrogen isotopomers, D(2) and HD, trapped in the molecular cages of a fullerene C(60) molecule. We measured the infrared spectra and analyzed them using a spherical potential for a vibrating rotor. The potential, vibration-rotation Hamiltonian, and dipole moment parameters are compared with previously studied H(2)@C(60) parameters [M. Ge, U. Nagel, D. Hüvonen, T. Rõõm, S. Mamone, M. H. Levitt, M. Carravetta, Y. Murata, K. Komatsu, J. Y.-C. Chen, and N. J. Turro, J. Chem. Phys. 134, 054507 (2011)]. The isotropic part of the potential is similar for all three isotopomers. In HD@C(60), we observe mixing of the rotational states and an interference effect of the dipole moment terms due to the displacement of the HD rotation center from the fullerene cage center.

11.
J Chem Phys ; 134(5): 054507, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21303138

RESUMO

We have measured the temperature dependence of the infrared spectra of a hydrogen molecule trapped inside a C(60) cage, H(2)@C(60), in the temperature range from 6 to 300 K and analyzed the excitation spectrum by using a five-dimensional model of a vibrating rotor in a spherical potential. The electric dipole moment is induced by the translational motion of endohedral H(2) and gives rise to an infrared absorption process where one translational quantum is created or annihilated, ΔN = ±1. Some fundamental transitions, ΔN = 0, are observed as well. The rotation of endohedral H(2) is unhindered but coupled to the translational motion. The isotropic and translation-rotation coupling part of the potential are anharmonic and different in the ground and excited vibrational states of H(2). The vibrational frequency and the rotational constant of endohedral H(2) are smaller than those of H(2) in the gas phase. The assignment of lines to ortho- and para-H(2) is confirmed by measuring spectra of a para enriched sample of H(2)@C(60) and is consistent with the earlier interpretation of the low temperature infrared spectra [Mamone et al., J. Chem. Phys. 130, 081103 (2009)].

12.
J Magn Reson ; 205(2): 269-75, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20570540

RESUMO

We demonstrate a pulse sequence using symmetry-based rotor-synchronised RN(n)(nu) sequences for homonuclear dipolar decoupling that achieves pure absorption phase high-resolution (1)H spectra in solid-state NMR. This sequence is compared with the phase-modulated Lee-Goldburg scheme. Experimental results are shown for samples of glycine and L-histidine.HCl.H(2)O for magic-angle-spinning frequencies in the range of 14-30 kHz and at two different magnetic fields.


Assuntos
Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Algoritmos , Campos Eletromagnéticos , Glicina/química , Histidina/química , Hidrogênio/química , Espectroscopia de Ressonância Magnética/métodos
13.
J Chem Phys ; 130(8): 081103, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19256588

RESUMO

We report the observation of quantized translational and rotational motion of molecular hydrogen inside the cages of C(60). Narrow infrared absorption lines at the temperature of 6 K correspond to vibrational excitations in combination with translational and rotational excitations and show well-resolved splittings due to the coupling between translational and rotational modes of the endohedral H(2) molecule. A theoretical model shows that H(2) inside C(60) is a three-dimensional quantum rotor moving in a nearly spherical potential. The theory provides both the frequencies and the intensities of the observed infrared transitions. Good agreement with the experimental results is obtained by fitting a small number of empirical parameters to describe the confining potential, as well as the relative concentration of ortho- and para-H(2).

14.
Phys Rev Lett ; 102(1): 013001, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257185

RESUMO

We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

15.
J Chem Phys ; 128(14): 144512, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18412464

RESUMO

The low-temperature structure and dynamics of guest molecules of p-xylene incorporated in the isopropyl-calix[4] arene(2:1) p-xylene complex have been investigated by solid state nuclear magnetic resonance (NMR). Using one-dimensional 1H-decoupled 13C cross-polarization magic-angle-spinning (MAS) NMR and two-dimensional 1H-13C correlation spectroscopy, a full assignment of the 13C and 1H chemical shifts has been made. Using 1H NMR relaxometry, the effects of thermal history on the structure of the system have been investigated. Rapidly cooled samples have 1H spin-lattice relaxation times T1, which at low temperature (T<60 K) are typically two orders of magnitude faster than those observed in annealed samples which have been cooled slowly over many hours. In both forms, the low-temperature relaxation is driven by the dynamics of the weakly hindered methyl rotors of the p-xylene guest. The substantial difference in T1 is attributed in the rapidly cooled sample to disorder in the structure of the complex leading to a wide distribution of correlation times and methyl barrier heights. A comparison of the linewidths and splittings in the high resolution 13C MAS spectra of the two forms provides structural insight into the nature of the disorder. Using 1H field-cycling NMR relaxometry, the methyl dynamics of the p-xylene guest in the annealed sample have been fully characterized. The B-field dependence of the 1H T1 maps out the spectral density from which the correlation times are directly measured. The methyl barrier heights are determined from an analysis of the temperature dependence.

16.
Phys Chem Chem Phys ; 9(35): 4879-94, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17912417

RESUMO

We present an overview of solid-state NMR studies of endohedral H(2)-fullerene complexes, including (1)H and (13)C NMR spectra, (1)H and (13)C spin relaxation studies, and the results of (1)H dipole-dipole recoupling experiments. The available data involves three different endohedral H(2)-fullerene complexes, studied over a wide range of temperatures and applied magnetic fields. The symmetry of the cage influences strongly the motionally-averaged nuclear spin interactions of the endohedral H(2) species, as well as its spin relaxation behaviour. In addition, the non-bonding interactions between fullerene cages are influenced by the presence of endohedral hydrogen molecules. The review also presents several pieces of experimental data which are not yet understood, one example being the structured (1)H NMR lineshapes of endohedral H(2) molecules trapped in highly symmetric cages at cryogenic temperatures. This review demonstrates the richness of NMR phenomena displayed by H(2)-fullerene complexes, especially in the cryogenic regime.

17.
J Chem Phys ; 124(10): 104507, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16542088

RESUMO

We have observed 1H NMR spectra of hydrogen molecules trapped inside modified fullerene cages under cryogenic conditions. Experiments on static samples were performed at sample temperatures down to 4.3 K, while magic-angle-spinning (MAS) experiments were performed at temperatures down to 20 K at spinning frequencies of 15 kHz. Both types of NMR spectra show a large increase in the intramolecular 1H-1H dipolar coupling at temperatures below 50 K, revealing thermal selection of a small number of spatial rotational states. The static and MAS spectra were compared to estimate the degree of sample heating in high-speed cryogenic MAS-NMR experiments. The cryogenic MAS-NMR data show that the site resolution of magic-angle-spinning NMR may be combined with the high signal strength of cryogenic operation and that cryogenic phenomena may be studied with chemical site selectivity.

18.
Solid State Nucl Magn Reson ; 26(2): 57-64, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15276635

RESUMO

We demonstrate a new set of methods for transferring spin polarization between different nuclear isotopes in magic-angle-spinning solid-state NMR. The technique employs symmetry-based recoupling sequences on one irradiation channel and a simple sequence of between one and three strong radiofrequency pulses on the second channel. A phase shift of the recoupling sequences is applied at the same time as a pi/2 pulse on the second channel. The trajectory of the transferred polarization may be used to estimate heteronuclear distances. The method is particularly attractive for nuclei with low gyromagnetic ratios or for those experiencing strong anisotropic spin interactions, where conventional Hartmann-Hahn cross-polarization is difficult to apply. We demonstrate the method on 1H-13C, 1H-15N and 19F-109Ag systems.


Assuntos
Algoritmos , Carbono/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Processamento de Sinais Assistido por Computador , Estudos de Viabilidade , Prótons , Rotação , Marcadores de Spin
19.
J Magn Reson ; 159(1): 25-35, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12468300

RESUMO

We examine the double-quantum magic angle spinning NMR spectra of pairs of 13C nuclei coupled to one or more 14N nuclei. The experimental spectra of 13C(2)-glycine and glycyl-[13C(2)]-glycyl-glycine are used to demonstrate the sensitivity of the spectra to the orientation of 14N quadrupole interaction tensors and to the molecular torsional angles.


Assuntos
Isótopos de Carbono , Glicina/química , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Nitrogênio , Matemática , Estrutura Molecular , Teoria Quântica , Análise Espectral , Detecção de Spin
20.
J Magn Reson ; 155(1): 150-5, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11945045

RESUMO

We achieve a significant signal enhancement for the triple-quantum magic-angle spinning NMR of a spin-3/2 system, by using an amplitude-modulated radiofrequency field, followed by a selective 90 degrees pulse and a phase-shifted strong rf field, for the triple-quantum excitation, and an amplitude-modulated radiofrequency field for the conversion of triple-quantum coherence to observable single-quantum coherence. The experiment is demonstrated on the (87)Rb NMR of polycrystalline rubidium nitrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...