Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38935076

RESUMO

Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/µg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.


Assuntos
Aureobasidium , Técnicas Genéticas , Transformação Genética , Aureobasidium/citologia , Aureobasidium/genética , Aureobasidium/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Recombinação Homóloga , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína Vermelha Fluorescente
2.
Mol Biol Cell ; 35(4): br10, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446617

RESUMO

Aureobasidium pullulans is a ubiquitous fungus with a wide variety of morphologies and growth modes including "typical" single-budding yeast, and interestingly, larger multinucleate yeast than can make multiple buds in a single cell cycle. The study of A. pullulans promises to uncover novel cell biology, but currently tools are lacking to achieve this goal. Here, we describe initial components of a cell biology toolkit for A. pullulans, which is used to express and image fluorescent probes for nuclei as well as components of the cytoskeleton. These tools allowed live-cell imaging of the multinucleate and multibudding cycles, revealing highly synchronous mitoses in multinucleate yeast that occur in a semiopen manner with an intact but permeable nuclear envelope. These findings open the door to using this ubiquitous polyextremotolerant fungus as a model for evolutionary cell biology.


Assuntos
Ascomicetos , Saccharomyces cerevisiae , Ascomicetos/metabolismo , Aureobasidium , Citoesqueleto
3.
PLoS Comput Biol ; 19(10): e1011523, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37782676

RESUMO

Many cells adjust the direction of polarized growth or migration in response to external directional cues. The yeast Saccharomyces cerevisiae orient their cell fronts (also called polarity sites) up pheromone gradients in the course of mating. However, the initial polarity site is often not oriented towards the eventual mating partner, and cells relocate the polarity site in an indecisive manner before developing a stable orientation. During this reorientation phase, the polarity site displays erratic assembly-disassembly behavior and moves around the cell cortex. The mechanisms underlying this dynamic behavior remain poorly understood. Particle-based simulations of the core polarity circuit revealed that molecular-level fluctuations are unlikely to overcome the strong positive feedback required for polarization and generate relocating polarity sites. Surprisingly, inclusion of a second pathway that promotes polarity site orientation generated relocating polarity sites with properties similar to those observed experimentally. This pathway forms a second positive feedback loop involving the recruitment of receptors to the cell membrane and couples polarity establishment to gradient sensing. This second positive feedback loop also allows cells to stabilize their polarity site once the site is aligned with the pheromone gradient.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Retroalimentação , Proteínas de Saccharomyces cerevisiae/metabolismo , Feromônios/metabolismo , Comunicação Celular , Polaridade Celular/fisiologia
4.
Curr Biol ; 32(21): R1228-R1231, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347230

RESUMO

Secretory vesicles are often delivered to very specific targets, like pre-synaptic terminals or cell tips, to focus exocytosis. New work suggests that a biomolecular condensate focuses actin filaments that deliver incoming vesicles through the condensate to the plasma membrane.


Assuntos
Miosina Tipo V , Miosina Tipo V/metabolismo , Forminas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Vesículas Secretórias/metabolismo , Exocitose
5.
Mol Biol Cell ; 33(12): ar112, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947501

RESUMO

Many cells detect and follow gradients of chemical signals to perform their functions. Yeast cells use gradients of extracellular pheromones to locate mating partners, providing a tractable model for understanding how cells decode the spatial information in gradients. To mate, yeast cells must orient polarity toward the mating partner. Polarity sites are mobile, exploring the cell cortex until they reach the proper position, where they stop moving and "commit" to the partner. A simple model to explain commitment posits that a high concentration of pheromone is detected only upon alignment of partner cells' polarity sites and causes polarity site movement to stop. Here we explore how yeast cells respond to partners that make different amounts of pheromone. Commitment was surprisingly robust to various pheromone levels, ruling out the simple model. We also tested whether adaptive pathways were responsible for the robustness of commitment, but our results show that cells lacking those pathways were still able to accommodate changes in pheromone. To explain this robustness, we suggest that the steep pheromone gradients near each mating partner's polarity site trap the polarity site in place.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Comunicação Celular , Polaridade Celular/fisiologia , Fator de Acasalamento/metabolismo , Feromônios/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biomolecules ; 12(4)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35454091

RESUMO

Cells' ability to track chemical gradients is integral to many biological phenomena, including fertilization, development, accessing nutrients, and combating infection. Mating of the yeast Saccharomyces cerevisiae provides a tractable model to understand how cells interpret the spatial information in chemical gradients. Mating yeast of the two different mating types secrete distinct peptide pheromones, called a-factor and α-factor, to communicate with potential partners. Spatial gradients of pheromones are decoded to guide mobile polarity sites so that polarity sites in mating partners align towards each other, as a prerequisite for cell-cell fusion and zygote formation. In ascomycetes including S. cerevisiae, one pheromone is prenylated (a-factor) while the other is not (α-factor). The difference in physical properties between the pheromones, combined with associated differences in mechanisms of secretion and extracellular pheromone metabolism, suggested that the pheromones might differ in the spatial information that they convey to potential mating partners. However, as mating appears to be isogamous in this species, it is not clear why any such signaling difference would be advantageous. Here we report assays that directly track movement of the polarity site in each partner as a way to understand the spatial information conveyed by each pheromone. Our findings suggest that both pheromones convey very similar information. We speculate that the different pheromones were advantageous in ancestral species with asymmetric mating systems and may represent an evolutionary vestige in yeasts that mate isogamously.


Assuntos
Ascomicetos , Proteínas de Saccharomyces cerevisiae , Ascomicetos/metabolismo , Feromônios/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
7.
CBE Life Sci Educ ; 21(2): ar22, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324271

RESUMO

Science, technology, engineering, and mathematics (STEM) career barriers persist for individuals from marginalized communities due to financial and educational inequality, unconscious bias, and other disadvantaging factors. To evaluate differences in plans and interests between historically underrepresented (UR) and well-represented (WR) groups, we surveyed more than 3000 undergraduates enrolled in chemistry courses. Survey responses showed all groups arrived on campus with similar interests in learning more about science research. Over the 4 years of college, WR students maintained their interest levels, but UR students did not, creating a widening gap between the groups. Without intervention, UR students participated in lab research at lower rates than their WR peers. A case study pilot program, Biosciences Collaborative for Research Engagement (BioCoRE), encouraged STEM research exploration by undergraduates from marginalized communities. BioCoRE provided mentoring and programming that increased community cohesion and cultivated students' intrinsic scientific mindsets. Our data showed that there was no statistical significant difference between BioCoRE WR and UR students when surveyed about plans for a medical profession, graduate school, and laboratory scientific research. In addition, BioCoRE participants reported higher levels of confidence in conducting research than non-BioCoRE Scholars. We now have the highest annual number of UR students moving into PhD programs in our institution's history.


Assuntos
Grupos Minoritários , Estudantes , Engenharia/educação , Humanos , Grupos Minoritários/educação , Tecnologia/educação , Universidades
8.
Microbiol Mol Biol Rev ; 86(1): e0016521, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35138122

RESUMO

Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.


Assuntos
Quimiotaxia , Proteínas de Saccharomyces cerevisiae , Comunicação Celular , Fusão Celular , Feromônios/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
PLoS Comput Biol ; 17(7): e1008525, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34264926

RESUMO

Cells polarize their movement or growth toward external directional cues in many different contexts. For example, budding yeast cells grow toward potential mating partners in response to pheromone gradients. Directed growth is controlled by polarity factors that assemble into clusters at the cell membrane. The clusters assemble, disassemble, and move between different regions of the membrane before eventually forming a stable polarity site directed toward the pheromone source. Pathways that regulate clustering have been identified but the molecular mechanisms that regulate cluster mobility are not well understood. To gain insight into the contribution of chemical noise to cluster behavior we simulated clustering using the reaction-diffusion master equation (RDME) framework to account for molecular-level fluctuations. RDME simulations are a computationally efficient approximation, but their results can diverge from the underlying microscopic dynamics. We implemented novel concentration-dependent rate constants that improved the accuracy of RDME-based simulations, allowing us to efficiently investigate how cluster dynamics might be regulated. Molecular noise was effective in relocating clusters when the clusters contained low numbers of limiting polarity factors, and when Cdc42, the central polarity regulator, exhibited short dwell times at the polarity site. Cluster stabilization occurred when abundances or binding rates were altered to either lengthen dwell times or increase the number of polarity molecules in the cluster. We validated key results using full 3D particle-based simulations. Understanding the mechanisms cells use to regulate the dynamics of polarity clusters should provide insights into how cells dynamically track external directional cues.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Simulação por Computador , Modelos Biológicos , Algoritmos , Membrana Celular/fisiologia , Biologia Computacional , Difusão , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Processos Estocásticos
10.
Elife ; 102021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899733

RESUMO

The diversity of cell morphologies arises, in part, through regulation of cell polarity by Rho-family GTPases. A poorly understood but fundamental question concerns the regulatory mechanisms by which different cells generate different numbers of polarity sites. Mass-conserved activator-substrate (MCAS) models that describe polarity circuits develop multiple initial polarity sites, but then those sites engage in competition, leaving a single winner. Theoretical analyses predicted that competition would slow dramatically as GTPase concentrations at different polarity sites increase toward a 'saturation point', allowing polarity sites to coexist. Here, we test this prediction using budding yeast cells, and confirm that increasing the amount of key polarity proteins results in multiple polarity sites and simultaneous budding. Further, we elucidate a novel design principle whereby cells can switch from competition to equalization among polarity sites. These findings provide insight into how cells with diverse morphologies may determine the number of polarity sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Polaridade Celular , Forma Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/genética , Simulação por Computador , Proteínas do Citoesqueleto/genética , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Análise Numérica Assistida por Computador , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Tempo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética
11.
Mol Biol Cell ; 32(10): 1048-1063, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33689470

RESUMO

Yeast decode pheromone gradients to locate mating partners, providing a model for chemotropism. How yeast polarize toward a single partner in crowded environments is unclear. Initially, cells often polarize in unproductive directions, but then they relocate the polarity site until two partners' polarity sites align, whereupon the cells "commit" to each other by stabilizing polarity to promote fusion. Here we address the role of the early mobile polarity sites. We found that commitment by either partner failed if just one partner was defective in generating, orienting, or stabilizing its mobile polarity sites. Mobile polarity sites were enriched for pheromone receptors and G proteins, and we suggest that such sites engage in an exploratory search of the local pheromone landscape, stabilizing only when they detect elevated pheromone levels. Mobile polarity sites were also enriched for pheromone secretion factors, and simulations suggest that only focal secretion at polarity sites would produce high pheromone concentrations at the partner's polarity site, triggering commitment.


Assuntos
Polaridade Celular/fisiologia , Saccharomyces cerevisiae/fisiologia , Fator de Acasalamento/fisiologia , Via Secretória , Tropismo
12.
Mol Biol Cell ; 32(8): 638-644, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596113

RESUMO

Haploid cells of the budding yeast Saccharomyces cerevisiae communicate using secreted pheromones and mate to form diploid zygotes. Mating is monogamous, resulting in the fusion of precisely one cell of each mating type. Monogamous mating in crowded conditions, where cells have access to more than one potential partner, raises the question of how multiple-mating outcomes are prevented. Here we identify mutants capable of mating with multiple partners, revealing the mechanisms that ensure monogamous mating. Before fusion, cells develop polarity foci oriented toward potential partners. Competition between these polarity foci within each cell leads to disassembly of all but one focus, thus favoring a single fusion event. Fusion promotes the formation of heterodimeric complexes between subunits that are uniquely expressed in each mating type. One complex shuts off haploid-specific gene expression, and the other shuts off the ability to respond to pheromone. Zygotes able to form either complex remain monogamous, but zygotes lacking both can re-mate.


Assuntos
Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/metabolismo , Zigoto/metabolismo , Diploide , Genes Fúngicos/genética , Haploidia , Fator de Acasalamento/fisiologia , Feromônios/metabolismo , Reprodução/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
13.
Cells ; 9(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365827

RESUMO

Proteins associated with the yeast plasma membrane often accumulate asymmetrically within the plane of the membrane. Asymmetric accumulation is thought to underlie diverse processes, including polarized growth, stress sensing, and aging. Here, we review our evolving understanding of how cells achieve asymmetric distributions of membrane proteins despite the anticipated dissipative effects of diffusion, and highlight recent findings suggesting that differential diffusion is exploited to create, rather than dissipate, asymmetry. We also highlight open questions about diffusion in yeast plasma membranes that remain unsolved.


Assuntos
Membrana Celular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Membrana Celular/metabolismo , Polaridade Celular , Difusão , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Curr Biol ; 29(20): 3439-3456.e5, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31607535

RESUMO

Fungi have been found in every marine habitat that has been explored; however, the diversity and functions of fungi in the ocean are poorly understood. In this study, fungi were cultured from the marine environment in the vicinity of Woods Hole, MA, USA, including from plankton, sponge, and coral. Our sampling resulted in 35 unique species across 20 genera. We observed many isolates by time-lapse, differential interference contrast (DIC) microscopy and analyzed modes of growth and division. Several black yeasts displayed highly unconventional cell division cycles compared to those of traditional model yeast systems. Black yeasts have been found in habitats inhospitable to other life and are known for halotolerance, virulence, and stress resistance. We find that this group of yeasts also shows remarkable plasticity in terms of cell size control, modes of cell division, and cell polarity. Unexpected behaviors include division through a combination of fission and budding, production of multiple simultaneous buds, and cell division by sequential orthogonal septations. These marine-derived yeasts reveal alternative mechanisms for cell division cycles that seem likely to expand the repertoire of rules established from classic model system yeasts.


Assuntos
Divisão Celular , Leveduras/fisiologia , Oceano Atlântico , Massachusetts
15.
PLoS Biol ; 17(10): e3000484, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31622333

RESUMO

Accurate detection of extracellular chemical gradients is essential for many cellular behaviors. Gradient sensing is challenging for small cells, which can experience little difference in ligand concentrations on the up-gradient and down-gradient sides of the cell. Nevertheless, the tiny cells of the yeast Saccharomyces cerevisiae reliably decode gradients of extracellular pheromones to find their mates. By imaging the behavior of polarity factors and pheromone receptors, we quantified the accuracy of initial polarization during mating encounters. We found that cells bias the orientation of initial polarity up-gradient, even though they have unevenly distributed receptors. Uneven receptor density means that the gradient of ligand-bound receptors does not accurately reflect the external pheromone gradient. Nevertheless, yeast cells appear to avoid being misled by responding to the fraction of occupied receptors rather than simply the concentration of ligand-bound receptors. Such ratiometric sensing also serves to amplify the gradient of active G protein. However, this process is quite error-prone, and initial errors are corrected during a subsequent indecisive phase in which polarity clusters exhibit erratic mobile behavior.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Feromônios/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores de Fator de Acasalamento/genética , Receptores de Fator de Acasalamento/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
16.
Small GTPases ; 10(2): 130-137, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-28350208

RESUMO

Cell polarity is fundamental to the function of most cells. The evolutionarily conserved molecular machinery that controls cell polarity is centered on a family of GTPases related to Cdc42. Cdc42 becomes activated and concentrated at polarity sites, but studies in yeast model systems led to controversy on the mechanisms of polarization. Here we review recent studies that have clarified how Cdc42 becomes polarized in yeast. On one hand, findings that appeared to support a key role for the actin cytoskeleton and vesicle traffic in polarity establishment now appear to reflect the action of stress response pathways induced by cytoskeletal perturbations. On the other hand, new findings strongly support hypotheses on the polarization mechanism whose origins date back to the mathematician Alan Turing. The key features of the polarity establishment mechanism in yeasts include a positive feedback pathway in which active Cdc42 recruits a Cdc42 activator to polarity sites, and differential mobility of polarity "activators" and "substrates."


Assuntos
Polaridade Celular , Retroalimentação Fisiológica , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
17.
J Cell Biol ; 218(1): 171-189, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30459262

RESUMO

In many cells, morphogenetic events are coordinated with the cell cycle by cyclin-dependent kinases (CDKs). For example, many mammalian cells display extended morphologies during interphase but round up into more spherical shapes during mitosis (high CDK activity) and constrict a furrow during cytokinesis (low CDK activity). In the budding yeast Saccharomyces cerevisiae, bud formation reproducibly initiates near the G1/S transition and requires activation of CDKs at a point called "start" in G1. Previous work suggested that CDKs acted by controlling the ability of cells to polarize Cdc42, a conserved Rho-family GTPase that regulates cell polarity and the actin cytoskeleton in many systems. However, we report that yeast daughter cells can polarize Cdc42 before CDK activation at start. This polarization operates via a positive feedback loop mediated by the Cdc42 effector Ste20. We further identify a major and novel locus of CDK action downstream of Cdc42 polarization, affecting the ability of several other Cdc42 effectors to localize to the polarity site.


Assuntos
Polaridade Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , MAP Quinase Quinase Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Citocinese/genética , Retroalimentação Fisiológica , MAP Quinase Quinase Quinases/metabolismo , Mitose/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Tempo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
18.
PLoS One ; 13(12): e0200863, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566437

RESUMO

The conserved Rho-family GTPase Cdc42 is a master regulator of polarity establishment in many cell types. Cdc42 becomes activated and concentrated in a region of the cell cortex, and recruits a variety of effector proteins to that site. In turn, many effectors participate in regulation of cytoskeletal elements in order to remodel the cytoskeleton in a polarized manner. The budding yeast Saccharomyces cerevisiae has served as a tractable model system for studies of cell polarity. In yeast cells, Cdc42 polarization involves a positive feedback loop in which effectors called p21-activated kinases (PAKs) act to recruit a Cdc42-directed guanine nucleotide exchange factor (GEF), generating more GTP-Cdc42 in areas that already have GTP-Cdc42. The GTPase-interacting components (GICs) Gic1 and Gic2 are also Cdc42 effectors, and have been implicated in regulation of the actin and septin cytoskeleton. However, we report that cells lacking GICs are primarily defective in polarizing Cdc42 itself, suggesting that they act upstream as well as downstream of Cdc42 in yeast. Our findings suggest that feedback pathways involving GTPase effectors may be more prevalent than had been appreciated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Temperatura Alta , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética , Septinas/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
19.
Mol Biol Cell ; 29(26): 3119-3127, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355051

RESUMO

Studies of laboratory strains of Saccharomyces cerevisiae have uncovered signaling pathways involved in mating, including information-processing strategies to optimize decisions to mate or to bud. However, lab strains are heterothallic (unable to self-mate), while wild yeast are homothallic. And while mating of lab strains is studied using cycling haploid cells, mating of wild yeast is thought to involve germinating spores. Thus, it was unclear whether lab strategies would be appropriate in the wild. Here, we have investigated the behavior of several yeast strains derived from wild isolates. Following germination, these strains displayed large differences in their propensity to mate or to enter the cell cycle. The variable interest in sex following germination was correlated with differences in pheromone production, which were due to both cis- and trans-acting factors. Our findings suggest that yeast spores germinating in the wild may often enter the cell cycle and form microcolonies before engaging in mating.


Assuntos
Feromônios/metabolismo , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/fisiologia , Comunicação Celular/fisiologia , Ciclo Celular/fisiologia , Saccharomyces cerevisiae/ultraestrutura , Esporos Fúngicos/ultraestrutura
20.
Mol Biol Cell ; 29(17): 2069-2083, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29927361

RESUMO

Tip growth in fungi involves highly polarized secretion and modification of the cell wall at the growing tip. The genetic requirements for initiating polarized growth are perhaps best understood for the model budding yeast Saccharomyces cerevisiae. Once the cell is committed to enter the cell cycle by activation of G1 cyclin/cyclin-dependent kinase (CDK) complexes, the polarity regulator Cdc42 becomes concentrated at the presumptive bud site, actin cables are oriented toward that site, and septin filaments assemble into a ring around the polarity site. Several minutes later, the bud emerges. Here, we investigated the mechanisms that regulate the timing of these events at the single-cell level. Septin recruitment was delayed relative to polarity establishment, and our findings suggest that a CDK-dependent septin "priming" facilitates septin recruitment by Cdc42. Bud emergence was delayed relative to the initiation of polarized secretion, and our findings suggest that the delay reflects the time needed to weaken the cell wall sufficiently for the cell to bud. Rho1 activation by Rom2 occurred at around the time of bud emergence, perhaps in response to local cell-wall weakening. This report reveals regulatory mechanisms underlying the morphogenetic events in the budding yeast.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Actinas/metabolismo , Polaridade Celular , Parede Celular/metabolismo , Modelos Biológicos , Morfogênese , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...