Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 24(44): 5334-5341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30659531

RESUMO

BACKGROUND: Human mesenchymal stem cell-derived exosomes (hMSC-Exo) have been shown to reduce ischemia/reperfusion injury (I/R) in multiple models. I/R-induced apoptosis or autophagy play important roles in cell death. However, little or no reports demonstrate any roles of hMSC-Exo in this regards. OBJECTIVE: To test the hypothesis that the inhibition of I/R-induced apoptosis and autophagy play a pivotal role in the cardioprotection of hMSC-Exo. METHODS: Myoblast H9c2 cells and isolated rat hearts underwent hypoxia/re-oxygenate (H/R) or ischemia/ reperfusion (I/R) respectively. H9c2 were treated with 1.0 µg/ml Exo, in comparison with 3-MA or rapamycin (Rapa), a known anti- or pro-autophagic agent respectively. Hearts were treated with 0.5, 1.0 and 2.0 µg/ml Exo for 20 min in the beginning of reperfusion. Cell viability, WST assay, LDH release, Annexin-V staining apoptosis assay and GFP-LC3 labeled autophagosomes formation, cardiac function and Western blot were measured. RESULTS: Exo significantly reduced H/R injury as indicated by increased cell viability and reduced LDH and apoptosis. 3-MA, while Rapa, showed increased or decreased protective effects. Rapa-induced injury was partially blocked by Exo. Exo decreased LC3-II/I ratio and increased p62, inhibited autophagosome formation, an indication of autophagy inhibition. In isolated heart, Exo increased cardiac functional recovery and reduced LDH release in I/R. Bcl-2 was significantly upregulated by Exo but not 3-MA. Exo downregulated Traf6 and upregulated mTORC1/p-4eBP1. CONCLUSION: Exo reduce I/R-induced apoptosis and autophagy. Up-regulation of Bcl-2 is the cross-talk between these two processes. The down-regulation of Traf6 and activation of mTORC1 are additional mechanisms in the inhibition of apoptosis and autophagy.


Assuntos
Apoptose , Autofagia , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Humanos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Sprague-Dawley
2.
Sci Rep ; 7(1): 8250, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811555

RESUMO

Study of microRNA (miRNAs) using sheep models is limited due to lack of miRNA information. We therefore investigated oar-miRNAs and their regulation in an ovine model of heart failure (HF). Left ventricular (LV) tissue was collected from normal (Cont), HF (LV pacing @ ~220bpm for 13-days) and HF-recovery sheep (HF-R, 26-days after pacing cessation). MiRNA expression was profiled using next-generation sequencing (NGS) and miRNA array, and validated by stem-loop qPCR. Detected sequences were mapped against the ovine genome (Oar v4.0) and aligned with known miRNAs (miRBase v21). A total of 36,438,340 raw reads were obtained with a peak distribution of 18-23 nt. Of these, 637 miRNAs were detected by NGS and mapped to the ovine genome. With cut-off at 10 counts, 275 novel miRNAs were identified (with 186 showing 100% alignment and 89 showing 70-99% alignment with human/mouse and/or rat miRNAs, respectively), and 78 known oar-miRNAs. Cardiac-enriched miRNA-1, -133a, -208a/b and -499 were highly expressed in the LV. With HF induction, miRNA-133b-3p, -208b-3p, -125a-5p, -125b-5p, -126-3p, -21-5p, -210-3p, -29a-3p, -320a and -494-3p were significantly up-regulated relative to Cont and tended to return to normal levels following HF-recovery. This study has expanded the sheep miRNA database, and demonstrated HF-induced regulation of miRNAs.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Miocárdio/metabolismo , Ovinos/genética , Transcriptoma , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes
3.
J Cardiovasc Pharmacol Ther ; 21(3): 296-309, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26396139

RESUMO

BACKGROUND: A highly efficient approach to select microRNA (miRNA) targets is a key to develop a miRNA-based therapeutic approach to cardiac ischemia-reperfusion (I/R). To reverse the change induced by disease, I/R in this case, is the traditional strategy to develop therapeutic drugs. However, examples show that it will not always serve the purpose. In this study, we demonstrate an additional approach of selecting miRNA targets with therapeutic potential following cues from cardioprotection-induced changes rather than by reversing disease-induced changes in cardiac I/R. METHODS: Isolated perfused rat hearts subjected to I/R were treated with 50 µmol/L sodium hydrosulfide (NaHS) or 10 nmol/L urocortin 2 (UCN2). Cardiac miRNA regulations were determined by miRNA array. Functional screening of selected miRNA mimics, assessed by WST (2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) activity and lactate dehydrogenase (LDH) release, was performed in H9c2 and neonatal rat ventricular myocytes (NRVMs) with hypoxia/reoxygenation. RNA-induced silencing complex (RISC)-loaded miRNAs caused by mimic transfection were quantified following argonaute-2 immunoprecipitation. Gene regulations of 1 selected miRNA were determined by quantitative polymerase chain reaction and Western blot. RESULTS: Treatment with NaHS and UCN2 significantly improved cardiac function and reduced LDH release. The miRNA array indicated a panel of commonly up- and downregulated miRNAs. Among them, 10 upregulated miRNAs with antiapoptotic and antiautophagy potentials were selected for further screening. Mimics of miRNA-221, -150, and -206 were protective in both H9c2 and NRVM. RISC-loaded miRNAs were up by ∼20-fold above. To further prove the feasibility of this approach, miRNA-221 was studied. It reduced I/R-induced caspase 3/7 activity and LC3-II (microtubule-associated protein 1 light chain 3). Measuring genes predicted to regulate apoptosis and autophagy, miRNA-221 mimic decreased Ddit4, TP53inp1, and p27 at both messenger RNA (mRNA) and protein levels, and reduced mRNA of Bak1 and Puma and proteins of Bim and Bmf. CONCLUSION: Mimicking miRNA changes caused by cardioprotective agents, combined with functional screening, enables investigators to efficiently identify novel miRNAs with therapeutic potential in cardiac I/R.


Assuntos
Terapia Genética/métodos , MicroRNAs/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Preparação de Coração Isolado , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Sprague-Dawley , Sulfetos/farmacologia , Transfecção , Urocortinas/farmacologia
4.
Mol Cell Biochem ; 398(1-2): 135-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25245818

RESUMO

Urocortin-2 (UCN2) is cardioprotective in ischemia/reperfusion injury (I/R) through short-lived activation of ERK1/2. Key factors involved in I/R, e.g. apoptosis, mitochondrial damage, p38 kinase, and Bcl-2 family, have not been well-investigated in UCN2-induced cardioprotection. We assessed the role of p38-MAPK in anti-apoptotic Bcl-2 signaling and mitochondrial stabilization as a putative mechanisms in UCN2-induced cardioprotection. Isolated hearts from adult Sprague-Dawley rats and cultured H9c2 cells were subjected to I/R protocols with or without 10 nM UCN2 treatment. The effect of a specific p38 inhibitor SB202190 was tested in H9c2 cells. Cardiac function, LDH release, and mitochondrial membrane potential (MMP) were used to assess the degree of myocardial injury in hearts and H9c2 cells. Post-perfusion, hearts were collected for Western blot analyses or mitochondria/cytosol isolation to analyze p38 activation and Bcl-2 family members. UCN2 treatment improved rate-pressure product (58 ± 5 vs. 31 ± 4 % of Baseline; P < 0.05) and decreased LDH release (20 ± 9 vs. 90 ± 40 mU/ml LDH, P < 0.01) at the end of 60 min reperfusion. UCN2 reduced phospho-p38 levels and Bax activation. UCN2 increased the expression of Bcl-2 and inhibited the accumulation of p-Bim. With additional experiments, it was confirmed that UCN2 increases the phosphorylation of ERK1/2 in the early phase of UCN2 treatment and increases the overshot recovery of ERK1/2 phosphorylation during reperfusion. UCN2 and SB202190 partially prevented the loss of MMP induced by I/R. However, combined treatment with UCN2 and SB202190 did not provide additive benefit. UCN2 is cardioprotective in I/R in association with reduced phosphorylation of p38 together with the increased ERK1/2 activation and increased Bcl-2 family member pro-survival signaling. These changes may stabilize cardiac mitochondria, similar to p38 inhibitors, as part of a pro-survival mechanism during I/R.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Urocortinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Imidazóis/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridinas/farmacologia , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...