Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 22(13): 2157-64, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21551066

RESUMO

Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55-Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes.


Assuntos
Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus/fisiologia , Animais , Divisão Celular , Quinases Ciclina-Dependentes/metabolismo , Feminino , Fase G2 , Peptídeos e Proteínas de Sinalização Intercelular , Mutação , Oócitos/metabolismo , Peptídeos/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Progesterona/metabolismo , Ligação Proteica , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
2.
Curr Biol ; 21(5): 428-32, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21353560

RESUMO

Supernumerary centrosomes are a key cause of genomic instability in cancer cells. New centrioles can be generated by duplication with a mother centriole as a platform or, in the absence of preexisting centrioles, by formation de novo. Polo-like kinase 4 (Plk4) regulates both modes of centriole biogenesis, and Plk4 deregulation has been linked to tumor development. We show that Plx4, the Xenopus homolog of mammalian Plk4 and Drosophila Sak, induces de novo centriole formation in vivo in activated oocytes and in egg extracts, but not in immature or in vitro matured oocytes. Both kinase activity and the polo-box domain of Plx4 are required for de novo centriole biogenesis. Polarization microscopy in "cycling" egg extracts demonstrates that de novo centriole formation is independent of Cdk2 activity, a major difference compared to template-driven centrosome duplication that is linked to the nuclear cycle and requires cyclinA/E/Cdk2. Moreover, we show that the Mos-MAPK pathway blocks Plx4-dependent de novo centriole formation before fertilization, thereby ensuring paternal inheritance of the centrosome. The results define a new system for studying the biochemical and molecular basis of de novo centriole formation and centriole biogenesis in general.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas de Xenopus/metabolismo , Animais , Western Blotting , Microscopia de Polarização , Oócitos/metabolismo , Xenopus
3.
Curr Biol ; 20(5): 387-96, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20188555

RESUMO

BACKGROUND: In response to DNA damage, cells activate checkpoints to halt cell-cycle progression and prevent genomic instability. Checkpoint activation induced by DNA double-strand breaks (DSB) is dependent on the ATM kinase, a master regulator of the DNA damage response (DDR) that is activated through autophosphorylation and monomerization. RESULTS: Here we show that either protein phosphatase 1 or 2A is sufficient to suppress activation of the DDR and that simultaneous inhibition of both phosphatases fully activates the response. PP1-dependent DDR regulation is mediated by its chromatin-targeting subunit, Repo-Man. Studies in Xenopus egg extracts demonstrate that Repo-Man interacts with ATM and PP1 through distinct domains, leading to PP1-dependent regulation of ATM phosphorylation and activation. Consequently, the level of Repo-Man determines the activation threshold of the DNA damage checkpoint. Repo-Man interacts and extensively colocalizes with ATM in human cells. Expression of wild-type, but not PP1 binding-deficient, Repo-Man attenuates DNA damage-induced ATM activation. Moreover, Repo-Man dissociates from active ATM at DNA damage sites, suggesting that activation of the DDR involves removal of inhibitory regulators. Analysis of primary tumor tissues and cell lines demonstrates that Repo-Man is frequently upregulated in many types of cancers. Elevated Repo-Man expression blunts DDR activation in precancerous cells, whereas knockdown of Repo-Man in malignant cancer cells resensitizes the DDR and restrains growth in soft agar. CONCLUSIONS: We report essential DDR regulation mediated by Repo-Man-PP1 and further delineate underlying mechanisms. Moreover, our evidence suggests that elevated Repo-Man contributes to cancer progression.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Cromatina , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas Nucleares/genética , Proteína Fosfatase 2/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
4.
Cell Cycle ; 8(15): 2413-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19556869

RESUMO

Entry into mitosis requires the activation of mitotic kinases, including Aurora A and Polo-like kinase 1 (Plk1). Increased levels of these kinases are frequently found associated with human cancers, and therefore it is imperative to understand the processes leading to their activation. We demonstrate that TPX2, but neither Ajuba nor Inhibitor-2, can activate Aurora A directly. Moreover, Plx1 can induce Aurora A T-loop phosphorylation indirectly in vivo during oocyte maturation. We identify Ser204 in TPX2 as a Plx1 phosphorylation site. Mutating Ser204 to alanine decreases activation of Aurora A, whereas a phosphomimetic Asp mutant exhibits enhanced activating ability. Finally, we show that phosphorylation of TPX2 with Plx1 increases its ability to activate Aurora A. Taken together, our data indicate that Plx1 promotes activation of Aurora A, most likely through TPX2. In light of the current literature, we propose a model in which Plx1 and Aurora A activate each other in a positive feedback loop.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Aurora Quinases , Células CHO/metabolismo , Ciclo Celular/fisiologia , Cricetinae , Cricetulus , Fosforilação/fisiologia
5.
J Biol Chem ; 284(9): 5497-505, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19121998

RESUMO

p53 is an important tumor suppressor regulating the cell cycle at multiple stages in higher vertebrates. The p53 gene is frequently deleted or mutated in human cancers, resulting in loss of p53 activity. This leads to centrosome amplification, aneuploidy, and tumorigenesis, three phenotypes also observed after overexpression of the oncogenic kinase Aurora A. Accordingly, recent studies have focused on the relationship between these two proteins. p53 and Aurora A have been reported to interact in mammalian cells, but the function of this interaction remains unclear. We recently reported that Xenopus p53 can inhibit Aurora A activity in vitro but only in the absence of TPX2. Here we investigate the interplay between Xenopus Aurora A, TPX2, and p53 and show that newly synthesized TPX2 is required for nearly all Aurora A activation and for full p53 synthesis and phosphorylation in vivo during oocyte maturation. In vitro, phosphorylation mediated by Aurora A targets serines 129 and 190 within the DNA binding domain of p53. Glutathione S-transferase pull-down studies indicate that the interaction occurs via the p53 transactivation domain and the Aurora A catalytic domain around the T-loop. Our studies suggest that targeting of TPX2 might be an effective strategy for specifically inhibiting the phosphorylation of Aurora A substrates, including p53.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , Aurora Quinases , Feminino , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Imunoprecipitação , Oócitos/citologia , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Xenopus laevis/crescimento & desenvolvimento
6.
Mol Cell Biol ; 28(12): 4196-203, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18378691

RESUMO

The dynamics of the Aurora B protein kinase during Xenopus oocyte meiotic maturation were examined. Resting G2 oocytes express inactive Aurora B that is not associated with other subunits of the chromosome passenger complex (CPC). Activity increases near the time of germinal vesicle breakdown in progesterone-treated oocytes, and this increase is correlated with the synthesis of inner centromere protein (INCENP) and survivin, components of the CPC. Ablation of INCENP synthesis led to the failure of progesterone treatment to activate Aurora B, but biochemical progression through the meiosis I-to-II transition and arrest at metaphase II were not affected. At fertilization, Aurora B was deactivated in concert with the degradation of INCENP, and the levels of Aurora B kinase activity and INCENP oscillated in subsequent embryonic cell cycles. Prevention of the decrease in Aurora B activity at fertilization by expression of ectopic wild-type INCENP, but not kinase-dead Aurora B INCENP, blocked calcium-induced exit from metaphase arrest in egg extracts.


Assuntos
Regulação da Expressão Gênica , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Animais , Apoptose , Aurora Quinases , Centrômero/ultraestrutura , Clonagem Molecular , Feminino , Fertilização , Masculino , Modelos Biológicos , Progesterona/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
7.
Curr Biol ; 18(7): 519-25, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18372177

RESUMO

Targeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Desenvolvimento Embrionário/fisiologia , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fuso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Linhagem Celular , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Fuso Acromático/fisiologia , Xenopus
8.
Cell Cycle ; 7(1): 3-6, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18196968

RESUMO

In Xenopus embryos, the first 12 cell division cycles before the midblastula transition (MBT) feature rapid and synchronous alternations between DNA replication and mitosis. Moreover, embryos at this stage lack checkpoints that halt the cell cycle in response to DNA damage, whereas introduction of a threshold amount of undamaged plasmid or sperm DNA allows a DNA damage checkpoint response to be activated. In a search for the underlying mechanism, we recently discovered that the checkpoint signal initiated by damaged DNA is enhanced by the undamaged threshold DNA. Thus developmental regulation of the cell cycle checkpoint is achieved at the 12(th) cleavage divisions by the maternally programmed increase in the DNA-to-cytoplasmic ratio. In contrast, the apoptotic response to DNA damage is not enabled in pre-MBT embryos merely by providing a threshold DNA-to-cytoplasmic ratio. Interestingly, damaged DNA triggers changes on physically separated undamaged chromatin through release of an ATM-dependent soluble checkpoint signal. We propose that this novel mode of "in trans" regulation is employed in the DNA damage response to modulate a broad range of chromatin-associated activities in a genome-wide manner.


Assuntos
Dano ao DNA/fisiologia , Embrião não Mamífero/fisiologia , Transdução de Sinais/genética , Animais , Blástula/citologia , Blástula/fisiologia , Embrião não Mamífero/citologia , Xenopus laevis
9.
Mol Cell Biol ; 27(19): 6852-62, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17664286

RESUMO

In Xenopus laevis embryos, the midblastula transition (MBT) at the 12th cell division marks initiation of critical developmental events, including zygotic transcription and the abrupt inclusion of gap phases into the cell cycle. Interestingly, although an ionizing radiation-induced checkpoint response is absent in pre-MBT embryos, introduction of a threshold amount of undamaged plasmid or sperm DNA allows a DNA damage checkpoint response to be activated. We show here that undamaged threshold DNA directly participates in checkpoint signaling, as judged by several dynamic changes, including H2AX phosphorylation, ATM phosphorylation and loading onto chromatin, and Chk1/Chk2 phosphorylation and release from nuclear DNA. These responses on physically separate threshold DNA require gamma-H2AX and are triggered by an ATM-dependent soluble signal initiated by damaged DNA. The signal persists in egg extracts even after damaged DNA is removed from the system, indicating that the absence of damaged DNA is not sufficient to end the checkpoint response. The results identify a novel mechanism by which undamaged DNA enhances checkpoint signaling and provide an example of how the transition to cell cycle checkpoint activation during development is accomplished by maternally programmed increases in the DNA-to-cytoplasm ratio.


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA , DNA/metabolismo , Embrião não Mamífero/fisiologia , Genes cdc , Transdução de Sinais/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/anatomia & histologia , Histonas/genética , Histonas/metabolismo , Masculino , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espermatozoides/fisiologia , Extratos de Tecidos/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética
10.
Mol Endocrinol ; 21(3): 664-73, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17185392

RESUMO

Rapid, nongenomic membranal effects of progesterone were demonstrated in amphibian oocytes more than 30 y ago. Recently, a distinct family of membrane progestin receptors (mPRs) has been cloned in fish and other vertebrate species. In this study we explore the role of mPR in promoting oocyte maturation in Xenopus laevis. RT-PCR analysis indicates that Xenopus oocytes contain transcripts for the mPRbeta ortholog, similar to what has been reported in zebrafish oocytes, and Western blotting shows that the protein is expressed on the oocyte plasma membrane. Microinjection of mPRbeta-specific antibodies into oocytes resulted in a dramatic inhibition of progesterone-dependent oocyte maturation, whereas microinjection of mRNA encoding Myc-Xenopus mPR (XmPR)beta resulted in an accelerated rate of progesterone-induced oocyte maturation, concomitant with membranal localization of the protein. Binding studies in mammalian cells expressing XmPRbeta confirmed specific binding of progesterone by the expressed protein. These results suggest that XmPRbeta is a physiological progesterone receptor involved in initiating the resumption of meiosis during maturation of Xenopus oocytes.


Assuntos
Oócitos/efeitos dos fármacos , Progesterona/farmacologia , Receptores de Progesterona/fisiologia , Xenopus laevis , Animais , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Proteínas de Membrana/fisiologia , Oócitos/metabolismo , Ligação Proteica , Receptores de Progesterona/metabolismo , Maturidade Sexual/efeitos dos fármacos , Transfecção
11.
Curr Biol ; 16(19): 1968-73, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17027495

RESUMO

Cytostatic factor (CSF) arrests vertebrate eggs in metaphase of meiosis II through several pathways that inhibit activation of the anaphase-promoting complex/cyclosome (APC/C). In Xenopus, the Mos-MEK1-MAPK-p90(Rsk) cascade utilizes spindle-assembly-checkpoint components to effect metaphase arrest. Another pathway involves cyclin E-Cdk2, and sustained cyclin E-Cdk2 activity in egg extracts causes metaphase arrest in the absence of Mos; this latter finding suggests that an independent pathway contributes to CSF arrest. Here, we demonstrate that metaphase arrest with cyclin E-Cdk2, but not with Mos, requires the spindle-checkpoint kinase monopolar spindles 1 (Mps1), a cyclin E-Cdk2 target that is also implicated in centrosome duplication. xMps1 is synthesized and activated during oocyte maturation and inactivated upon CSF release. In egg extracts, CSF release by calcium was inhibited by constitutively active cyclin E-Cdk2 and delayed by wild-type xMps1. Ablation of cyclin E by antisense oligonucleotides blocked accumulation of xMps1, suggesting that cyclin E-Cdk2 controls Mps1 levels. During meiosis II, activated cyclin E-Cdk2 significantly inhibited the APC/C even in the absence of the Mos-MAPK pathway, but this inhibition was not sufficient to suppress S phase between meiosis I and II. These results uniquely place xMps1 downstream of cyclin E-Cdk2 in mediating a pathway of APC/C inhibition and metaphase arrest.


Assuntos
Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Metáfase/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Ciclina E/antagonistas & inibidores , Ciclina E/genética , Sistema de Sinalização das MAP Quinases , Oligonucleotídeos Antissenso , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas Proto-Oncogênicas c-mos/fisiologia , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
12.
J Biol Chem ; 281(46): 34736-41, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16982610

RESUMO

Vertebrate oocytes awaiting fertilization are arrested at metaphase of meiosis II by cytostatic factor (CSF). This arrest is due to inhibition of the anaphase-promoting complex/cyclosome, in part by a newly identified protein, Emi2 (xErp1). Emi2 is required for maintenance of CSF arrest in egg extracts, but its function in CSF establishment in oocytes and the normal embryonic cell cycle is unknown. Here we show that during oocyte maturation, Emi2 appears only after metaphase I, and its level peaks at CSF arrest (metaphase II). In M phase, Emi2 undergoes a phosphorylation-dependent electrophoretic shift. Microinjection of antisense oligonucleotides against Emi2 into stage VI oocytes blocks progression through meiosis II and the establishment of CSF arrest. Recombinant Emi2 rescues CSF arrest in these oocytes and also causes CSF arrest in egg extracts and in blastomeres of two-cell embryos. Fertilization triggers rapid, complete degradation of Emi2, but it is resynthesized in the first embryonic cell cycle to reach levels 5-fold lower than during CSF arrest. However, depletion of the protein from cycling egg extracts does not prevent mitotic cell cycle progression. Thus, Emi2 plays an essential role in meiotic but not mitotic cell cycles.


Assuntos
Proteínas F-Box/metabolismo , Meiose/fisiologia , Mitose/fisiologia , Oócitos/metabolismo , Complexos Ubiquitina-Proteína Ligase/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Xenopus
13.
J Biol Chem ; 280(26): 24339-46, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15860459

RESUMO

Vertebrate oocytes are arrested in G(2) phase of the cell cycle at the prophase border of meiosis I. Progesterone treatment of Xenopus oocytes releases the G(2) block and promotes entry into the M phases of meiosis I and II. Substantial evidence indicates that the release of the G(2) arrest requires a decrease in cAMP and reduced activity of the cAMP-dependent protein kinase (PKAc). It has been reported and we confirm here that microinjection of either wild type or kinase-dead K72R PKAc inhibits progesterone-dependent release of the G(2) arrest with equal potency and that inhibition can be reversed by a second injection of the heat-stable inhibitor of PKAc, PKI. However, a mutant enzyme predicted to be completely kinase-dead from the crystal structure of PKAc, K72H PKAc, was much less inhibitory when carrying additional mutations that block interaction with either type I or type II regulatory subunit. Moreover, inhibition by K72H PKAc was reversed by PKI at a 30-fold lower concentration and with more rapid kinetics compared with wild type PKAc. K72R PKAc was found to have low but detectable activity after incubation in an oocyte extract. These results indicate that inhibition of the progesterone-dependent G(2)/M transition in oocytes after microinjection of dead PKAc reflects either low residual activity or binding to regulatory subunits with a resulting net increase in the level of endogenous wild type PKAc. Consistent with this hypothesis, the induction of mitosis in Xenopus egg extracts by the addition of cyclin B was blocked by wild type PKAc but not by K72H PKAc. The identification of substrates for PKAc that maintain cell cycle arrest in G(2) remains an important goal for future work.


Assuntos
Regulação Enzimológica da Expressão Gênica , Oócitos/metabolismo , Animais , Divisão Celular , Cristalografia por Raios X , AMP Cíclico/metabolismo , Ciclina B/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Fase G2 , Cinética , Meiose , Camundongos , Mitose , Oócitos/química , Progesterona/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Fatores de Tempo , Xenopus laevis
14.
Dev Cell ; 7(2): 275-81, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15296723

RESUMO

In Xenopus, cell cycle checkpoints monitoring DNA damage, DNA replication, and spindle assembly do not appear until after the midblastula transition (MBT; 4000 cells). We show that a DNA damage checkpoint can slow the cell cycle even in 2-cell embryos when the DNA content is increased. Slowing follows caffeine-sensitive activation of the checkpoint kinase, Chk1; degradation of the cell cycle phosphatase, Cdc25A; and inhibitory phosphorylation of Cdc25C and cyclin-dependent kinases (Cdks). Alterations in the DNA-to-cytoplasmic ratio elicit a dose-dependent DNA damage checkpoint, and the ratio required to activate Chk1 for the damage response is lower than that associated with "developmental" activation of Chk1 shortly after the MBT. Our results indicate that a maternal damage response, independent of zygotic transcription, is present even in very early embryos, and requires both double-stranded DNA ends and a threshold DNA-to-cytoplasmic ratio to significantly affect the cell cycle.


Assuntos
Citoplasma/metabolismo , Dano ao DNA , Animais , Cafeína/farmacologia , Ciclo Celular , Estimulantes do Sistema Nervoso Central/farmacologia , Quinase 1 do Ponto de Checagem , DNA/química , DNA/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Immunoblotting , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Tempo , Transcrição Gênica , Xenopus , Proteínas de Xenopus , Fosfatases cdc25/metabolismo
15.
J Biol Chem ; 279(20): 21367-73, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15016807

RESUMO

Polo-like kinases comprise a family of evolutionarily conserved serine/threonine protein kinases that play multiple roles in cell cycle regulation. In addition to the N-terminal catalytic domain, polo-like kinases have one or two highly conserved C-terminal non-catalytic regions, termed polo boxes. These motifs are required for targeting these kinases to subcellular mitotic structures. Here we report that kinase-dead Xenopus polo-like kinase (Plx1NA) functions as a competitor of endogenous Plx1 for polo box binding site(s) and inhibits the activation of Cdc25C and the G(2)-M transition in vivo. However, kinase-dead Plx1 with a point mutation in the polo box region (Plx1NAWF) did not have inhibitory effects. The ability of Plx1NA to block activation of the anaphase-promoting complex/cyclosome also requires an intact polo box. Microinjection of Plx1NA but not Plx1NAWF mRNA into Xenopus embryos caused cleavage arrest and formation of monopolar spindles, an effect previously seen in embryos injected with anti-Plx1 antibody. Spindle assembly experiments in vitro also showed that only monopolar spindles formed in Xenopus egg extracts supplemented with recombinant Plx1NA and that the spindle assembly process was delayed. Taken together, these results indicate that the polo box is required for Plx1 function in both the G(2)-M and the metaphase/anaphase transitions during the cell cycle.


Assuntos
Proteínas de Drosophila/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Xenopus/fisiologia , Anáfase , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/fisiologia , Feminino , Metáfase , Mutagênese Sítio-Dirigida , Oócitos/citologia , Oócitos/fisiologia , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/metabolismo , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Xenopus , Fosfatases cdc25/metabolismo
16.
J Cell Biol ; 163(6): 1231-42, 2003 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-14691134

RESUMO

In cells containing disrupted spindles, the spindle assembly checkpoint arrests the cell cycle in metaphase. The budding uninhibited by benzimidazole (Bub) 1, mitotic arrest-deficient (Mad) 1, and Mad2 proteins promote this checkpoint through sustained inhibition of the anaphase-promoting complex/cyclosome. Vertebrate oocytes undergoing meiotic maturation arrest in metaphase of meiosis II due to a cytoplasmic activity termed cytostatic factor (CSF), which appears not to be regulated by spindle dynamics. Here, we show that microinjection of Mad1 or Mad2 protein into early Xenopus laevis embryos causes metaphase arrest like that caused by Mos. Microinjection of antibodies to either Mad1 or Mad2 into maturing oocytes blocks the establishment of CSF arrest in meiosis II, and immunodepletion of either protein blocked the establishment of CSF arrest by Mos in egg extracts. A Mad2 mutant unable to oligomerize (Mad2 R133A) did not cause cell cycle arrest in blastomeres or in egg extracts. Once CSF arrest has been established, maintenance of metaphase arrest requires Mad1, but not Mad2 or Bub1. These results suggest a model in which CSF arrest by Mos is mediated by the Mad1 and Mad2 proteins in a manner distinct from the spindle checkpoint.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Meiose/fisiologia , Metáfase/fisiologia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Anticorpos/farmacologia , Proteínas de Ligação ao Cálcio/farmacologia , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Feminino , Genes cdc/efeitos dos fármacos , Genes cdc/fisiologia , Proteínas Mad2 , Meiose/efeitos dos fármacos , Metáfase/efeitos dos fármacos , Mutação/genética , Proteínas Nucleares , Proteínas Oncogênicas v-mos/genética , Proteínas Oncogênicas v-mos/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Fosfoproteínas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Repressoras/farmacologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...