Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spine Surg Relat Res ; 8(2): 133-142, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38618214

RESUMO

Postoperative epidural fibrosis (EF) is still a major limitation to the success of spine surgery. Fibrotic adhesions in the epidural space, initiated via local trauma and inflammation, can induce difficult-to-treat pain and constitute the main cause of failed back surgery syndrome, which not uncommonly requires operative revision. Manifold agents and methods have been tested for EF relief in order to mitigate this longstanding health burden and its socioeconomic consequences. Although several promising strategies could be identified, few have thus far overcome the high translational hurdle, and there has been little change in standard clinical practice. Nonetheless, notable research progress in the field has put new exciting avenues on the horizon. In this review, we outline the etiology and pathogenesis of EF, portray its clinical and surgical presentation, and critically appraise current efforts and novel approaches toward enhanced prevention and treatment.

3.
Transplantation ; 107(11): 2341-2352, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37026708

RESUMO

Short-term outcomes in allotransplantation are excellent due to technical and pharmacological advances; however, improvement in long-term outcomes has been limited. Recurrent episodes of acute cellular rejection, a primarily T cell-mediated response to transplanted tissue, have been implicated in the development of chronic allograft dysfunction and loss. Although it is well established that acute cellular rejection is primarily a CD4 + and CD8 + T cell mediated response, significant heterogeneity exists within these cell compartments. During immune responses, naïve CD4 + T cells are activated and subsequently differentiate into specific T helper subsets under the influence of the local cytokine milieu. These subsets have distinct phenotypic and functional characteristics, with reported differences in their contribution to rejection responses specifically. Of particular relevance are the regulatory subsets and their potential to promote tolerance of allografts. Unraveling the specific contributions of these cell subsets in the context of transplantation is complex, but may reveal new avenues of therapeutic intervention for the prevention of rejection.


Assuntos
Linfócitos T CD8-Positivos , Rejeição de Enxerto , Transplante Homólogo , Tolerância Imunológica , Aloenxertos
4.
Fac Rev ; 10: 21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718938

RESUMO

Organ transplantation is a life-saving treatment for end-stage organ failure. However, despite advances in immunosuppression, donor matching, tissue typing, and organ preservation, many organs are still lost each year to rejection. Ultimately, tolerance in the absence of immunosuppression is the goal, and although this seldom occurs spontaneously, a deeper understanding of alloimmunity may provide avenues for future therapies which aid in its establishment. Here, we highlight the recent key advances in our understanding of the allograft response. On the innate side, recent work has highlighted the previously unrecognised role of innate lymphoid cells as well as natural killer cells in promoting the alloresponse. The two major routes of allorecognition have recently been joined by a third newly identified pathway, semi-direct allorecognition, which is proving to be a key active pathway in transplantation. Through this review, we detail these newly defined areas in the allograft response and highlight areas for potential future therapeutic intervention.

5.
ACS Appl Mater Interfaces ; 11(37): 33637-33649, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31433156

RESUMO

There is a dire need to develop more effective therapeutics to combat brain cancer such as glioblastoma multiforme (GBM). An ideal treatment is expected to target deliver chemotherapeutics to glioma cells across the blood-brain barrier (BBB). The overexpression of transferrin (Tf) receptor (TfR) on the BBB and the GBM cell surfaces but not on the surrounding cells renders TfR a promising target. While porous silicon nanoparticles (pSiNPs) have been intensely studied as a delivery vehicle due to their high biocompatibility, degradability, and drug-loading capacity, the potential to target deliver drugs with transferrin (Tf)-functionalized pSiNPs remains unaddressed. Here, we developed and systematically evaluated Tf-functionalized pSiNPs (Tf@pSiNPs) as a glioma-targeted drug delivery system. These nanoparticles showed excellent colloidal stability and had a low toxicity profile. As compared with nontargeted pSiNPs, Tf@pSiNPs were selective to BBB-forming cells and GBM cells and were efficiently internalized through clathrin receptor-mediated endocytosis. The anticancer drug doxorubicin (Dox) was effectively loaded (8.8 wt %) and released from Tf@pSiNPs in a pH-responsive manner over 24 h. Furthermore, the results demonstrate that Dox delivered by Tf@pSiNPs induced significantly enhanced cytotoxicity to GBM cells across an in vitro BBB monolayer compared with free Dox. Overall, Tf@pSiNPs offer a potential toolbox for enabling targeted therapy to treat GBM.


Assuntos
Doxorrubicina , Portadores de Fármacos , Glioblastoma/tratamento farmacológico , Nanopartículas , Silício , Transferrina , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Porosidade , Silício/química , Silício/farmacocinética , Silício/farmacologia , Transferrina/química , Transferrina/farmacocinética , Transferrina/farmacologia
6.
J Mol Med (Berl) ; 97(10): 1439-1450, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31367858

RESUMO

Critical sized defects, especially in long bones, pose one of the biggest problems in orthopedic surgery. By definition, these defects do not heal without further treatment. Different therapeutic options range from autologous bone grafts, for example, free vascularized bone grafts, to commercially available bone allografts. Disadvantages of these bone allografts are related to reduced osteogenesis, since they are solely composed of cell-free bone matrix. The purpose of this study was to investigate the cell seeding efficiency of human adipose-derived stem cells (hASCs) on human bone allografts in vitro and furthermore analyze these optimized seeded allografts in a critical sized defect model in vivo. Cancellous human bone allografts were colonized with human ASCs in vitro. Cell seeding efficiency was evaluated by Cell Counting Kit-8 assay. Thereafter, optimized hASC-seeded bone scaffolds were examined in a murine femur defect model, stabilized with the MouseExFix system. Subsequently, x-ray analysis and histology were performed. Examination of cell seeding efficiency revealed an optimum starting population of 84,600 cells per 100 mm3 scaffold. In addition, scaffolds seeded with hASCs showed increased osteogenesis compared with controls. Histological analysis revealed increased remodeling and elevated new bone formation within hASC-seeded scaffolds. Moreover, immunohistochemical stainings revealed increased proliferation, osteogenesis, and angiogenesis. In this study, we systemically optimized cell/volume ratio of two promising components of tissue engineering: hASCs and human bone allografts. These findings may serve as a basis for future translational studies. KEY MESSAGES: Bone tissue engineering. Mesenchymal stem cells derived from human adipose tissue (hASCs). Optimal cell/volume ratio of cell-seeded scaffolds. Increased osteogenesis and angiogenesis in vivo.


Assuntos
Tecido Adiposo/citologia , Transplante Ósseo/métodos , Fêmur/lesões , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco/citologia , Cicatrização , Aloenxertos , Animais , Feminino , Fêmur/cirurgia , Humanos , Masculino , Camundongos Nus , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...