Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Foot Ankle Res ; 16(1): 54, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670403

RESUMO

BACKGROUND: Footwear and orthotic research has traditionally been conducted within laboratories. With increasing prevalence of wearable sensors for foot and ankle biomechanics measurement, transitioning experiments into the real-world is realistic. However wearable systems must effectively detect the direction and magnitude of response to interventions to be considered for future usage. METHODS: RunScribe IMU was used simultaneously with motion capture, accelerometers, and force plates during straight-line walking. Three orthotics (A, B, C) were used to change lower limb biomechanics from a control (SHOE) including: Ground reaction force (GRF) loading rate (A), pronation excursion (A and B), maximum pronation velocity (A and B), and impact shock (C) to test whether RunScribe detected effects consistent with laboratory measurements. Sensitivity was evaluated by assessing: 1. Significant differences (t-test) and effect sizes (Cohen's d) between measurement systems for the same orthotic, 2. Statistical significance (t-test and ANOVA) and effect size (Cohen's d & f) for orthotic effect across measurement systems 3. Direction of orthotic effect across measurement systems. RESULTS: GRF loading rate (SHOE: p = 0.138 d = 0.403, A: p = 0.541 d = 0.165), impact shock (SHOE: p = 0.177 d = 0.405, C: p = 0.668 d = 0.132), pronation excursion (A: p = 0.623 d = 0.10, B: p = 0.986 d = 0.00) did not significantly differ between measurement systems with low effect size. Significant differences and high effect sizes existed between systems in the control condition for pronation excursion (p = 0.005 d = 0.68), and all conditions for pronation velocity (SHOE: p < 0.001 d = 1.24, A: p = 0.001 p = 1.21, B: p = 0.050 d = 0.64). RunScribe (RS) and Laboratory (LM) recorded the same significant effect of orthotic but inconsistent effect sizes for GRF loading rate (LM: p = 0.020 d = 0.54, RS: p = 0.042 d = 0.27), pronation excursion (LM: p < 0.001 f = 0.31, RS: p = 0.042 f = 0.15), and non-significant effect of orthotic for impact shock (LM: p = 0.182 d = 0.08, RS: p = 0.457 d = 0.24). Statistical significance was different between systems for effect of orthotic on pronation velocity (LM: p = 0.010 f = 0.18, RS: p = 0.093 f = 0.25). RunScribe and Laboratory agreed on the direction of change of the biomechanics variables for 69% (GRF loading rate), 40%-70% (pronation excursion), 47%-65% (pronation velocity), and 58% (impact shock) of participants. CONCLUSION: The RunScribe shows sensitivity to orthotic effect consistent with the laboratory at the group level for GRF loading rate, pronation excursion, and impact shock during walking. There were however large discrepancies between measurements in individuals. Application of the RunScribe for group analysis may be appropriate, however implementation of RunScribe for individual assessment and those including pronation may lead to erroneous interpretation.


Assuntos
Marcha , Caminhada , Humanos , Fenômenos Biomecânicos , Articulação do Tornozelo , Laboratórios
2.
PLoS One ; 17(8): e0273308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35994458

RESUMO

INTRODUCTION: The use of portable gait measurement systems in research is appealing to collect real-world data at low-cost, low participant burden, and without requirement for dedicated lab space. Most commercially available inertial measurement units (IMU's) designed for running only capture temporospatial data, the ability to capture biomechanics data such as shock and motion metrics with the RunScribe IMU makes it the closest to a lab alternative. The RunScribe system has been validated in running, however, is yet to be validated for walking. METHOD: Qualisys motion capture, AMTI force plates, and Delsys Trigno accelerometers were used as gold standard lab measures for comparison against the RunScribe IMU. Twenty participants completed 10 footsteps per foot (20 total) measured by both systems simultaneously. Variables for validation included: Vertical Ground reaction force (GRF), instantaneous GRF rate, pronation excursion, pronation velocity, total shock, impact force, braking force. Interclass correlation (ICC) was used to determine agreement between the measurement systems, mean differences were used to evaluate group level accuracy. RESULTS: ICC results showed moderate agreement between measurement systems when both limbs were averaged. The greatest agreement was seen for GRF rate, pronation excursion, and pronation velocity (ICC = 0.627, 0.616, 0.539), low agreement was seen for GRF, total shock, impact shock, braking shock (ICC = 0.269, 0.351, 0.244, 0.180). However mean differences show the greatest level of accuracy for GRF, GRF rate, and impact shock. DISCUSSION: Results show mixed agreement between the RunScribe and gold standard lab measures, and varied agreement across left and right limbs. Kinematic variables showed the greatest agreement, however GRF had the lowest relative mean difference for group results. The results show acceptable levels of agreement for most variables, however further work must be done to assess the repeatability and sensitivity of the RunScribe to be applied within areas such as footwear testing and gait retraining protocols.


Assuntos
Marcha , Corrida , Fenômenos Biomecânicos , , Humanos , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...