Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 28(6): 501-511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477630

RESUMO

INTRODUCTION: Longevity research has matured to the point where significantly postponing age-related decline in physical and mental function is now achievable in the laboratory and foreseeable in the clinic. The most promising strategies involve rejuvenation, i.e. reducing biological age, not merely slowing its progression. AREAS COVERED: We discuss therapeutic strategies for rejuvenation and results achieved thus far, with a focus on in vivo studies. We discuss the implications of interventions which act on mean or maximum lifespan and those showing effects in accelerated disease models. While the focus is on work conducted in mice, we also highlight notable insights in the field from studies in other model organisms. EXPERT OPINION: Rejuvenation was originally proposed as easier than slowing aging because it targets initially inert changes to tissue structure and composition, rather than trying to disentangle processes that both create aging damage and maintain life. While recent studies support this hypothesis, a true test requires a panel of rejuvenation interventions targeting multiple damage categories simultaneously. Considerations of cost, profitability, and academic significance have dampened enthusiasm for such work, but it is vital. Now is the time for the field to take this key step toward the medical control of aging.


Assuntos
Envelhecimento , Geriatria , Longevidade , Rejuvenescimento , Animais , Envelhecimento/fisiologia , Humanos , Camundongos , Modelos Animais de Doenças , Roedores
2.
Biomedicines ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203698

RESUMO

Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome's transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.

3.
Redox Biol ; 30: 101429, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31981894

RESUMO

Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.


Assuntos
Biologia Computacional/métodos , Mitocôndrias/genética , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , NADH Desidrogenase/genética , Animais , Uso do Códon , DNA Mitocondrial/genética , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Proteínas Mitocondriais/genética , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...