Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37398456

RESUMO

Low back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine TNF-α has multiple pathways and has been implicated as a primary mediator of disc degeneration. We tested our ability to regulate the multiple TNF-α inflammatory signaling pathways in vivo utilizing CRISPR receptor modulation to slow the progression of disc degeneration in rats. Sprague-Dawley rats were treated with CRISPRi-based epigenome-editing therapeutics targeting TNFR1 and showed a decrease in behavioral pain in a disc degeneration model. Surprisingly, while treatment with the vectors alone was therapeutic, TNF-α injection itself became therapeutic after TNFR1 modulation. These results suggest direct inflammatory receptor modulation, to harness beneficial inflammatory signaling pathways, as a potent strategy for treating disc degeneration.

3.
J Biol Chem ; 298(1): 101466, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864060

RESUMO

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Inibidores da Colinesterase , Comportamento Alimentar , Junção Neuromuscular , Aldicarb/farmacologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Inibidores da Colinesterase/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Levamisol/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...