Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 154(12): 2782-2793, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973359

RESUMO

Subsequent to peripheral nerve compression and irritation, pathophysiological processes take place within nervous and immune systems. Here, we utilized a multimodal approach to comprehend peripheral and central soft tissue changes as well as alterations occurring in systemic analytes following unilateral chronic constriction injury (CCI) of the sciatic nerve in rodents. Using magnetic resonance imaging and [18F]-2-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography, we demonstrated robust structural abnormalities and enhanced FDG uptake within the injured nerve and surrounding muscle, respectively. To assess whether central morphological changes were induced by nerve injury, diffusion tenor imaging was performed. A decrease in fractional anisotropy in primary motor cortex contralateral to the injury site was observed. Evaluation of a panel of circulating cytokines, chemokines, and growth factors showed decreased levels of interleukin-1ß and Fractalkine in CCI animals. Area under the receiver operating curve (ROC) calculations of analyte levels, imaging, and behavioral end points ranged from 0.786 to 1, where behavioral and peripheral imaging end points (eg, FDG uptake in muscle) were observed to have the highest discriminatory capabilities (maximum area under ROC = 1) between nerve injury and sham conditions. Lastly, performance of correlation analysis involving all analyte, behavioral, and imaging data provided an understanding of the overall association amongst these end points, and importantly, a distinction in correlation patterns was observed between CCI and sham conditions. These findings demonstrate the multidimensional pathophysiology of sciatic nerve injury and how a combined analyte, behavioral, and imaging assessment can be implemented to probe this complexity.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Mediadores da Inflamação/sangue , Neuropatia Ciática/sangue , Neuropatia Ciática/diagnóstico , Animais , Biomarcadores/sangue , Polarização de Fluorescência/métodos , Mediadores da Inflamação/imunologia , Imageamento por Ressonância Magnética/métodos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/imunologia
2.
Pain ; 150(2): 319-326, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20621685

RESUMO

The TRPV1 antagonist A-995662 demonstrates analgesic efficacy in monoiodoacetate-induced osteoarthritic (OA) pain in rat, and repeated dosing results in increased in vivo potency and a prolonged duration of action. To identify possible mechanism(s) underlying these observations, release of neuropeptides and the neurotransmitter glutamate from isolated spinal cord was measured. In OA rats, basal release of glutamate, bradykinin and calcitonin gene-related peptide (CGRP) was significantly elevated compared to naïve levels, whereas substance P (SP) levels were not changed. In vitro studies showed that capsaicin-evoked TRPV1-dependent CGRP release was 54.7+/-7.7% higher in OA, relative to levels measured for naïve rats, suggesting that TRPV1 activity was higher under OA conditions. The efficacy of A-995662 in OA corresponded with its ability to inhibit glutamate and CGRP release from the spinal cord. A single, fully efficacious dose of A-995662, 100 micromol/kg, reduced spinal glutamate and CGRP release, while a single sub-efficacious dose of A-995662 (25 micromol/kg) was ineffective. Multiple dosing with A-995662 increased the potency and duration of efficacy in OA rats. Changes in efficacy did not correlate with plasma concentrations of A-995662, but were accompanied with reductions in spinal glutamate release. These findings suggest that repeated dosing of TRPV1 antagonists enhances therapeutic potency and duration of action against OA pain, at least in part, by the sustained reduction in release of glutamate and CGRP from the spinal cord.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ácido Glutâmico/metabolismo , Osteoartrite do Joelho/metabolismo , Dor/metabolismo , Medula Espinal/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Tetra-Hidronaftalenos/farmacologia , Análise de Variância , Animais , Bradicinina/metabolismo , Osteoartrite do Joelho/induzido quimicamente , Dor/induzido quimicamente , Medição da Dor , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Substância P/metabolismo
3.
J Med Chem ; 51(22): 7094-8, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18983139

RESUMO

cis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.8 nM) and demonstrated potent functional antagonism in vitro at human, rat, and mouse H(4) receptors in cell-based FLIPR assays. Compound 4 also demonstrated H(4) antagonism in vivo in mice, blocking H(4)-agonist induced scratch responses, and showed anti-inflammatory activity in mice in a peritonitis model. Most interesting was the high potency and efficacy of this compound in blocking pain responses, where it showed an ED(50) of 42 mumol/kg (ip) in a rat post-carrageenan thermal hyperalgesia model of inflammatory pain.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzofuranos/farmacologia , Hiperalgesia/tratamento farmacológico , Dor/prevenção & controle , Quinazolinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Benzofuranos/síntese química , Benzofuranos/química , Carragenina , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Hiperalgesia/induzido quimicamente , Ligantes , Camundongos , Estrutura Molecular , Dor/fisiopatologia , Peritonite/tratamento farmacológico , Quinazolinas/síntese química , Quinazolinas/química , Ratos , Receptores Histamínicos , Receptores Histamínicos H4 , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...