Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Mol Biosci ; 11: 1370933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690294

RESUMO

Introduction: Erythroblastic island (EBI) macrophages play an essential role in the production and maturation of the vast numbers of red blood cells (RBCs) that are produced throughout life. Their location within the bone marrow makes it difficult to study the cellular and molecular interactions associated with their action so we have used an in vitro model of the EBI niche using macrophages derived from human induced pluripotent stem cells (hiPSCs). We previously demonstrated that the activation of the transcription factor KLF1 enhanced the activity of hiPSC-derived EBI macrophages. Methods: To elucidate the mechanisms associated with EBI-like activity we carried out a quantitative proteomic analysis and assessed the role of extracellular vesicles using Nanosight Tracking analyses and media filtration. Results and Discussion: Gene ontology analysis showed that many of the proteins upregulated by KLF1 were protein-binding factors, some of which were associated with the cell membrane or extracellular vesicles We demonstrated that filtration of macrophage-conditioned media resulted in a reduction in the supportive effects on erythroid cell viability and maturation implying a role for extracellular vesicles but this was not KLF1 dependent. Pathway analyses of the proteomic data revealed that proteins upregulated by KLF1 were associated with the citric acid cycle, pyruvate metabolism and ATP synthesis indicating that KLF1-activated macrophages had a metabolic profile comparable to a pro-reparative phenotype. This study has generated a proteomic dataset that could provide new insights into the role of macrophages within the EBI niche and has indicated a potential role for extracellular vesicles in the differentiation and maturation of RBCs in vitro. Further research will aid in the production of RBCs in vitro for use in disease modelling and cell therapy.

2.
Pest Manag Sci ; 80(4): 1885-1894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38086734

RESUMO

BACKGROUND: Dinotefuran, a systemic neonicotinoid insecticide, is approved for control of hemlock woolly adelgid (HWA) (Adelges tsugae Annand), an invasive sap-feeding insect that can kill eastern hemlocks (Tsuga canadensis). Dinotefuran is highly water soluble, facilitating more rapid translocation and HWA control than other neonicotinoids, but its persistence is not well-known. Samples of needles and twigs were collected in spring 2021 from 50 hemlocks treated with a dinotefuran basal trunk spray in 2018 or 2019 (131-145 weeks and 85-93 weeks before sampling, respectively). Processed samples were analyzed with ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) and enzyme-linked immunosorbent assays (ELISA). RESULTS: Dinotefuran residues were 4.6-6.1 times higher in needles than in twigs collected from the same trees. Average (±SE) residues in foliage samples collected from trees treated in 2019 ranged from 0.663 ± 0.243 to 0.564 ± 0.119 mg kg-1 , compared with 0.213 ± 0.033 and 0.225 ± 0.132 mg kg-1 in foliage from trees treated in 2018. Foliage residues from UPLC-MS/MS were consistently lower but strongly related to those from ELISA. Matrix effects appeared to disrupt ELISA analysis of twigs. None of the 25 trees treated in 2019 had live HWA when samples were collected in 2021 while low densities of HWA were observed on 52% of trees treated in 2018. CONCLUSIONS: Dinotefuran was recovered from hemlock foliage, and to a lesser extent twigs, >2 years post-treatment. This, along with its relatively rapid translocation, suggests dinotefuran is a viable option for protecting declining or heavily infested hemlocks from HWA. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Guanidinas , Hemípteros , Cicutas (Apiáceas) , Nitrocompostos , Animais , Tsuga/química , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Neonicotinoides , Árvores , Ensaio de Imunoadsorção Enzimática
3.
Adv Healthc Mater ; : e2302502, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37616035

RESUMO

Human organoids have the potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo. This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by the lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, these challenges are overcome by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing, and encapsulation techniques are demonstrated on a pillar plate, which is coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels are differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.

4.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993405

RESUMO

Human organoids have potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo . This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, we overcome these challenges by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing and encapsulation techniques were demonstrated on a pillar plate, which was coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels were differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.

6.
Front Insect Sci ; 3: 1154510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469494

RESUMO

Spotted lanternfly (SLF) (Lycorma delicatula (White)), an invasive planthopper discovered in Pennsylvania, USA in 2014, continues to spread and is now present in 14 states with substantial infestations present in seven states. Population projections using adult SLF trapping or visual counts are not reliable due to the transient, migratory behavior of the adults which make population forecasts difficult. Another approach to population monitoring is utilization of the stationary egg mass stage, but counting small cryptic egg masses throughout the canopy of large trees in dense woodlots is arduous and prone to error. After several field seasons testing various trapping configurations and materials, we have identified an efficient, simple, low-cost trap termed a 'lamp shade trap' that is attached to the lower trunk area of an SLF host tree. SLF females readily enter the trap and lay eggs on the thin, flexible trap surface. A vertical trap orientation was superior, and the most productive woodlots yielded an average of 47 and 54 egg masses per trap, and several traps had over 100 egg masses. There were 1,943 egg masses tallied from 105 traps placed at six locations in two states. Egg mass counts in the area above and below the traps and on nearby control trees yielded very few egg masses in comparison. Selection of trees 15 to 20 cm in diameter for trap placement is most efficient, yielding good egg mass abundance while minimizing the amount of trap material used. The lamp shade trap has potential as an effective tool to identify SLF in new areas, gauge SLF population levels in woodlots and can also be used to collect and monitor egg masses for research purposes.

7.
Front Insect Sci ; 3: 1134064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469532

RESUMO

Spotted lanternfly (SLF) (Lycorma delicatula (White)), an invasive planthopper discovered in Pennsylvania, U.S.A. in 2014, feeds for approximately six months by sucking phloem sap from trunks and limbs of tree of heaven, Ailanthus altissima, along with several native trees and woody vines. Basal trunk sprays of dinotefuran, a systemic neonicotinoid insecticide, are commonly used to reduce SLF densities and spread. Information on dinotefuran persistence and within-tree distribution can help identify optimal timing of annual basal trunk sprays, facilitating efficient use of available resources. We applied dinotefuran to 20 uninfested A. altissima trees in early April then periodically sampled foliage to monitor insecticide residues. Foliar dinotefuran residues averaged (± SE) 7.8 ± 1.1 and 6.3 ± 1.2 in July and August, respectively, then dropped significantly to 2.6 ± 0.5 ppm in September. In a second study, 20 A. altissima trees were similarly treated with dinotefuran basal trunk sprays in early June. Trees were felled to collect foliage and phloem from branches and the trunk in either mid-July or September. Foliar residues averaged 12.7 ± 1.3 and 14.6 ± 2.2 ppm in July and September, respectively. For trees felled in July, residues were detected in phloem collected from below the spray line on trunks of seven trees and above the spray line on three trees, averaging 8.6 ± 4.4 and 7.4 ± 2.9 ppm, respectively. In trees felled in September, phloem from below spray lines of seven trees averaged 3.7 ± 1.3 ppm but dinotefuran was not detected in phloem from above the spray line on any trees. Dinotefuran was not detected in phloem sampled from any branches in either July or September. Results suggest dinotefuran basal trunk sprays applied between late May and mid June should persist long enough to effectively control SLF late instars and adults.

8.
Stem Cell Reports ; 17(8): 1889-1902, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35905739

RESUMO

A major technical limitation hindering the widespread adoption of human pluripotent stem cell (hPSC)-derived gastrointestinal (GI) organoid technologies is the need for de novo hPSC differentiation and dependence on spontaneous morphogenesis to produce detached spheroids. Here, we report a method for simple, reproducible, and scalable production of small intestinal organoids (HIOs) based on the aggregation of cryopreservable hPSC-derived mid-hindgut endoderm (MHE) monolayers. MHE aggregation eliminates variability in spontaneous spheroid production and generates HIOs that are comparable to those arising spontaneously. With a minor modification to the protocol, MHE can be cryopreserved, thawed, and aggregated, facilitating HIO production without de novo hPSC differentiation. Finally, aggregation can also be used to generate antral stomach organoids and colonic organoids. This improved method removes significant barriers to the implementation and successful use of hPSC-derived GI organoid technologies and provides a framework for improved dissemination and increased scalability of GI organoid production.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular , Endoderma , Humanos , Intestino Delgado
9.
Mol Ther Methods Clin Dev ; 22: 26-39, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485592

RESUMO

Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.

10.
Vet Parasitol Reg Stud Reports ; 25: 100614, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34474778

RESUMO

Australian Wool Innovation Limited (AWI) commissioned three cross-sectional surveys of sheep producers' sheep parasite control practices over a 15-year period from 2003 to 2018. The aims were to document current sheep parasite incidence and control practices, to measure change in sheep parasite control practices over time and to inform extension messages for sheep industry advisors and sheep farmers. The surveys were conducted in 2004, 2012 and 2019 measuring sheep parasite control practices in the years 2003, 2011 and 2018. The surveys focused on incidence and control of the three major sheep parasite groups; gastrointestinal nematodes, blowflies and lice. The 2003 and 2011 surveys were paper-based and the 2018 survey was accessed via a link to an online survey. This article is the first in a series of four presenting the results of the three surveys and will cover methods, demographics, production systems and general parasite management. Response rates to the surveys declined each year from the peak response rate in 2003 (n = 1365 in 2003; n = 575 in 2011 and n = 354 in 2018). Mean reported rainfall was significantly lower in 2018 (407 mm) than in 2003 (611 mm) and 2011 (650 mm). The demographics of the respondents and their production systems were largely similar between the three surveys for respondent age, median property size, income from wool and sheep meat, proportion of the property area cropped, median sheep dry sheep equivalent (DSEs), ewes as a proportion of the total flock and median cattle DSEs. Month of weaning was more likely to be in summer months for summer dominant rainfall areas and spring for intermediate and winter dominant rainfall areas. There was a marked increase in the proportion of respondents asking for an animal health history when introducing sheep to their flock from 2011 (9%) to 2018 (65%). Similarly, a greater proportion of respondents isolated introduced sheep for at least 2 weeks in 2018 (82%) compared with 2011 (19%). However, there was a decrease in the use of a quarantine lice treatment for introduced sheep from 2011 (50%) to 2018 (21%). Farmers rated themselves, other farmers or member of their staff as most important sources of information on parasite control in both 2011 and 2018. There was a significant increase in the proportion of respondents visiting the ParaBoss suite of websites from 2011 to 2018 confirming their growing importance for information delivery and decision support.


Assuntos
Anti-Helmínticos , Doenças dos Bovinos , Nematoides , Doenças dos Ovinos , Animais , Anti-Helmínticos/uso terapêutico , Austrália/epidemiologia , Biosseguridade , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Controle de Doenças Transmissíveis , Estudos Transversais , Fazendas , Feminino , Ovinos , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/prevenção & controle , Inquéritos e Questionários
11.
Stem Cells ; 39(5): 522-535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33497522

RESUMO

Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand ß-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and ß-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human ß-cells, to cell lines, to pluripotent stem cell-derived ß-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are ß-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying ß-cell biology, improving ß-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.


Assuntos
Diabetes Mellitus/terapia , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Células-Tronco Pluripotentes/metabolismo , Comunicação Celular/genética , Diferenciação Celular/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Insulina/genética , Células Secretoras de Insulina/transplante , Dispositivos Lab-On-A-Chip , Células-Tronco Pluripotentes/transplante
12.
Acta Biomater ; 99: 121-132, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539655

RESUMO

The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded cell viability by manipulating bioink gel robustness, characterized by mass flow rate. Below a critical point, cell viability linearly decreases with decreasing flow rates, but above this point, high viability is achieved. This work underscores the importance of building a foundational understanding of the relationships between extrudable bioink properties and cell health post-printing to more efficiently tune material properties for a variety of tissue and organ engineering applications. Finally, we also develop a post-printing, cell-friendly cross-linking strategy utilizing the same reactions used for synthesis. This secondary cross-linking leads to a range of mechanical properties relevant to soft tissue engineering as well as highly viable cell-laden gels stable for over one month in culture. STATEMENT OF SIGNIFICANCE: We demonstrate that a PEG crosslinking bioink method can be used with various cytocompatible, covalent cross-linking reactions: Thiol Michael type addition and tetrazine-norbornene click. The ability to vary bioink chemistry expands candidate polymers, and therefore can expedite development of new bioinks from unique polymers. We confirm post-printed cell viability and are the first to probe, in covalently cross-linked inks, how cell viability is impacted by different flow properties (mass flow rate). Finally, we also present PEG cross-linking as a new method of post-printing cross-linking that improves mechanical properties and stability while maintaining cell viability. By varying the cross-linking reaction, this method can be applicable to many types of polymers/inks for easy adoption by others investigating bioinks and hydrogels.


Assuntos
Materiais Biocompatíveis/química , Bioimpressão/instrumentação , Reagentes de Ligações Cruzadas/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Bioimpressão/métodos , Sobrevivência Celular , Química Click , Fibroblastos/citologia , Gelatina/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Hidrogéis/química , Norbornanos/química , Impressão Tridimensional , Reologia , Estresse Mecânico
13.
J Mech Behav Biomed Mater ; 98: 108-120, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31226553

RESUMO

Soft biological tissues such as skeletal muscle and brain white matter can be inhomogeneous and anisotropic due to the presence of fibers. Unlike biological tissue, phantoms with known microstructure and defined mechanical properties enable a quantitative assessment and systematic investigation of the influence of inhomogeneities on the nature of shear wave propagation. This study introduces a mathematical measure for the wave shape, which the authors call as the 1-Norm, to determine the conditions under which homogenization may be a valid approach. This is achieved through experimentation using the Magnetic Resonance Elastography technique on 3D printed inhomogeneous fiber phantoms as well as on ex-vivo porcine lumbus muscle. In addition, Finite Element Analysis is used as a tool to decouple the effects of directional anisotropy from those of inhomogeneity. A correlation is then established between the values of 1-Norm derived from the wave front geometry, and the spacing (d) between neighboring inhomogeneities (spherical inclusions or fibers and fiber intersections in phantoms and muscle). Smaller values of 1-Norm indicate less wave scattering at the locations of fiber intersections, which implies that the wave propagation may be approximated to that of a homogeneous medium; homogenization may not be a valid approximation when significant scattering occurs at the locations of inhomogeneities. In conclusion, the current study proposes 1-Norm as a quantitative measure of the magnitude of wave scattering in a medium, which can potentially be used as a homogeneity index of a biological tissue.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Análise de Elementos Finitos , Imageamento por Ressonância Magnética/instrumentação , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Animais , Impressão Tridimensional , Suínos
14.
J Mech Behav Biomed Mater ; 89: 199-208, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292169

RESUMO

The presence and progression of neuromuscular pathology, including spasticity, Duchenne's muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance Imaging (MRI)-based strategies, has been grounded in assumptions of local homogeneity and isotropy. Striated skeletal and cardiac muscle, as well as brain white matter and soft tissue in some other organ regions, exhibit a fibrous microstructure which entails heterogeneity and anisotropic response; as one seeks to improve the accuracy and resolution in mechanical property assessment, heterogeneity and anisotropy need to be accounted for in order to optimize both the dynamic elastography experimental protocol and the interpretation of the measurements. Advances in elastography methodology at every step have been aided by the use of tissue-mimicking phantoms. The aim of the present study was to develop and characterize a heterogeneous composite phantom design with uniform controllable anisotropic properties meant to be comparable to the frequency-dependent anisotropic properties of skeletal muscle. MRE experiments and computational finite element (FE) studies were conducted on a novel 3D-printed composite phantom design. The displacement maps obtained from simulation and experiment show the same elliptical shaped wavefronts elongated in the plane where the structure presents higher shear modulus. The model exhibits a degree of anisotropy in line with literature data from skeletal muscle tissue MRE experiments. FE simulations of the MRE experiments provide insight into proper interpretation of experimental measurements, and help to quantify the importance of heterogeneity in the anisotropic material at different scales.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Músculo Esquelético/diagnóstico por imagem , Imagens de Fantasmas , Anisotropia , Análise de Elementos Finitos
15.
Acta Biomater ; 85: 84-93, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30590182

RESUMO

Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context of engineering the intrahepatic biliary tree, an often-understudied topic in liver tissue engineering. Encapsulating biliary epithelial cells (cholangiocytes) within liver dECM has been shown to lead to the formation of complex biliary trees in vitro. By varying several aspects of the dECM structures' geometry, such as width and angle, we show that we can guide the directional formation of biliary trees. This is confirmed by computational 3D image analysis of duct alignment. This system also enables fabrication of a true multi-layer dECM structure and the formation of 3D biliary trees into which other cell types can be seeded. For example, we show that hepatocyte spheroids can be easily incorporated within this system, and that the seeding sequence influences the resulting structures after seven days in culture. STATEMENT OF SIGNIFICANCE: The field of liver tissue engineering has progressed significantly within the past several years, however engineering the intrahepatic biliary tree has remained a significant challenge. In this study, we utilize the inherent bioactivity of decellularized extracellular matrix (dECM) hydrogels and 3D-printing of a sacrificial biomaterial to create spatially defined, 3D biliary trees. The creation of patterned, 3D dECM hydrogels in the past has only been possible with additives to the gel that may stifle its bioactivity, or with rigid and permanent support structures that may present issues upon implantation. Additionally, the biological effect of 3D spatially patterned liver dECM has not been demonstrated independent of the effects of dECM bioactivity alone. This study demonstrates that sacrificial materials can be used to create pure, multi-layer dECM structures, and that strut width and angle can be changed to influence the formation and alignment of biliary trees encapsulated within. Furthermore, this strategy allows co-culture of other cells such as hepatocytes. We demonstrate that not only does this system show promise for tissue engineering the intrahepatic biliary tree, but it also aids in the study of duct formation and cell-cell interactions.


Assuntos
Sistema Biliar/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Hidrogéis/farmacologia , Animais , Ductos Biliares/efeitos dos fármacos , Sistema Biliar/efeitos dos fármacos , Técnicas de Cocultura , Epitélio/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Feminino , Hepatócitos/citologia , Humanos , Camundongos , Impressão Tridimensional , Suínos , Alicerces Teciduais/química
16.
Sci Rep ; 8(1): 12220, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111800

RESUMO

The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.


Assuntos
Sistema Biliar/metabolismo , Matriz Extracelular/metabolismo , Fígado/metabolismo , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/citologia , Sistema Biliar/citologia , Linhagem Celular , Células Epiteliais/citologia , Feminino , Hidrogéis/farmacologia , Fígado/citologia , Camundongos , Suínos
17.
Acta Biomater ; 69: 63-70, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29317370

RESUMO

Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. STATEMENT OF SIGNIFICANCE: Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in 2D models.


Assuntos
Gelatina/química , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/metabolismo , Impressão Tridimensional , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Porosidade
18.
Stem Cell Reports ; 7(3): 399-410, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27523617

RESUMO

The meibomian and sebaceous glands secrete lipids to prevent desiccation of the ocular surface and skin, respectively. Precisely how these holocrine tissues regenerate is not well understood. To address this, we characterized keratin 5(+) (K5) label-retaining cells (LRCs) and the lineage tracing of keratin 14 (K14) progenitors in mouse meibomian glands. Using the tet-off H2B-GFP/K5tTA mouse, H2B-GFP fluorescence dilutes 2-fold with every division in K5(+) cell nuclei after doxycycline administration. In 3D reconstructions generated over a >28-day doxycycline chase, we observed LRCs at the acinus entrance where K6(+) ductal epithelium terminates. For lineage tracing, K14CreER(T2)-Confetti mice were injected intraperitoneally with tamoxifen and euthanized at 23 and 59 weeks later. Meibomian gland acini in these mice were either monochromatic or dual-colored, whereas the duct exhibited multiple colors. In conclusion, LRCs are likely to direct meibomian gland turnover and may exist as two distinct unipotent progenitors that renew ductal and acinar tissue separately.


Assuntos
Diferenciação Celular , Glândulas Tarsais/citologia , Glândulas Tarsais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Linhagem da Célula , Expressão Gênica , Genes Reporter , Queratina-14/genética , Queratina-14/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos
19.
Pest Manag Sci ; 72(5): 1023-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26194342

RESUMO

BACKGROUND: Economic and ecological impacts of ash (Fraxinus spp.) mortality resulting from emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion are severe in forested, residential and urban areas. Management options include girdling ash trees to attract ovipositing adult beetles and then destroying infested trees before larvae develop or protecting ash with a highly effective, systemic emamectin benzoate insecticide. Injecting this insecticide and then girdling injected trees a few weeks later could effectively create lethal trap trees, similar to a bait-and-kill tactic, if girdling does not interfere with insecticide translocation. We compared EAB larval densities on girdled trees, trees injected with the emamectin benzoate insecticide, trees injected with the insecticide and then girdled 18-21 days later and untreated controls at multiple sites. RESULTS: Pretreatment larval densities did not differ among treatments. Current-year larval densities were higher on girdled and control trees than on any trees treated with insecticide at all sites. Foliar residue analysis and adult EAB bioassays showed that girdling trees after insecticide injections did not reduce insecticide translocation. CONCLUSIONS: Girdling ash trees to attract adult EAB did not reduce efficacy of emamectin benzoate trunk injections applied ≥ 18 days earlier and could potentially be used in integrated management programs to slow EAB population growth.


Assuntos
Besouros , Fraxinus/química , Controle de Insetos/métodos , Inseticidas , Ivermectina/análogos & derivados , Árvores/química , Animais , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Fraxinus/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Árvores/crescimento & desenvolvimento
20.
Acta Biomater ; 25: 121-130, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26159106

RESUMO

The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2-9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants.


Assuntos
Colágeno Tipo III/química , Córnea/química , Fenômenos Ópticos , Próteses e Implantes , Colágeno Tipo III/ultraestrutura , Córnea/ultraestrutura , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Metacrilatos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Refratometria , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...