Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 84(3): 449-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19659886

RESUMO

Antarctic fellfields present organisms with a heterogeneous habitat characterised by a wide variety of environmental stresses. These include low temperatures, limited moisture availability, frequent and often rapid freeze-thaw and hydration-dehydration cycles, exposure to high photosynthetic photon flux density and ultraviolet (uv) irradiance, seasonal snow cover, high winds, cryoturbation and, depending on location south of the Antarctic Circle, considerable daylight in summer. Most of these factors vary both predictably and unpredictably in spatial and temporal planes. In response to this adverse environment, fellfield organisms have developed a variety of strategies to overcome physiological stress and to exploit the limited resources available during the short austral growing season. A high degree of synchronisation exists, so that investment in non-essential activity and adaptations is minimised. Here, we review the combined suites of co-adapted traits used by different fellfield taxa to achieve energy acquisition, growth and reproduction under adverse levels of two principal limiting factors: low temperatures and the scarcity of water. To this end, a detailed characterisation of the Antarctic fellfield microenvironment is followed by a synthesis of available data on the morphology, physiology, life history and behaviour of successful Antarctic flora and fauna. Tolerance of low temperatures by fellfield organisms is achieved by elevation of standard metabolism, production and accumulation of cryoprotectants, supercooling, melanic pigmentation, behavioural avoidance, compact growth forms and synchronised reproduction and extended life cycles. Low moisture conditions are overcome by dehydration resistance, anhydrobiosis, development of resting stages and by behavioural avoidance of desiccating conditions. Occupancy of the Antarctic fellfield habitat is considered to require the ability to respond rapidly to ephemeral resources and to tolerate severe environmental stresses. During summer, organisms rely on opportunism to maintain a positive energy balance. During winter, resistance adaptations are used to withstand the potentially lethal climate, especially in habitats not protected by snow cover. This deterministic framework has led to the selection of species that are genetically and physiologically pre-adapted for resource acquisition yet sufficiently robust to withstand cold and desiccation stresses. Non-adapted taxa fail to become established. Despite the environmental selection pressures, available evidence suggests that colonisation of the fellfield habitat has not required the evolution of any adaptations, only the refinement of those already possessed to an extent by some temperate forms. This has led to the convergence of survival strategies. It is hypothesised that, in the short term, the majority of Antarctic fellfield biota are able to absorb the predicted effects of a changing climate by their high levels of physiological tolerance and life-cycle flexibility.


Assuntos
Adaptação Fisiológica/fisiologia , Ecossistema , Invertebrados/fisiologia , Plantas/metabolismo , Animais , Regiões Antárticas , Estações do Ano
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 59(10): 2301-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12909143

RESUMO

Lichens in Antarctic habitats are subjected to environmental extremes, including UVB radiation, desiccation and low temperatures, as well as to rapid fluctuations in these. Lichens synthesise a variety of chemical compounds in response to their environmental conditions which contribute towards their colour, and which act as protectants against physiological stresses. The fluorescence generated by the lichens at 532 nm can be used in epifluorescence microscopy to identify their presence on substrata but this can severely affect the Raman spectra using visible excitation. The advantage of the near infrared excitation used in FT-Raman spectroscopy in minimising fluorescence emission facilitates the molecular characterisation of lichen encrustations without having to remove the thallus from its substrate or remove or otherwise damage any part of the thallus. Spectroscopic biomarkers are proposed which allow the lichens to be characterised by the identification of characteristic lichen substances; the use of these biomarkers for the preliminary taxonomic identification of Antarctic lichens is examined and some potential pitfalls are described.


Assuntos
Líquens/química , Pigmentos Biológicos/química , Regiões Antárticas , Pigmentos Biológicos/análise , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...