Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 104: 105170, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823088

RESUMO

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.


Assuntos
Anticorpos Antivirais , Modelos Animais de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Humanos , Carga Viral , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos
2.
Front Cell Neurosci ; 17: 1187425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496706

RESUMO

Perineuronal nets (PNNs) form a specialized extracellular matrix that predominantly surrounds parvalbumin (PV)-expressing GABAergic inhibitory interneurons and help regulate neuronal activity. Their formation early in the postnatal period is regulated by neuronal signaling and glial activation raising concerns that part of the long-term effects ascribed to perinatal viral infections could be mediated by altered PNN formation. Previously, we developed a model of neonatal Zika virus (ZIKV) infection where mice have lifelong neurological sequelae that includes motor disfunction and reduced anxiety coupled with a persistent low-grade expression in proinflammatory markers despite resolving the acute infection. Here, we demonstrate that ZIKV infection to P1 neonatal mice results in a reduction of PNN formation during the acute disease with significant reduction in Wisteria floribunda agglutinin (WFA) staining at the peak of infection [15 days post infection (dpi)] that persisted after the symptoms resolved (30 dpi). At 60 dpi, when there is residual inflammation in the CNS, the number of WFA+ cells and the level of WFA staining as well as levels of aggrecan and brevican in the brains of convalescent mice were not different from those in uninfected controls, however, there was increased frequency of PNNs with an immature phenotype. Over time the impact of the perinatal infection became less evident and there were no clear differences in PNN morphology between the groups at 1 year post infection. Of note, the reduction in PNNs during acute ZIKV infection was not associated with decreased mRNA levels of aggrecan or brevican, but increased levels of degraded aggrecan and brevican indicating increased PNN degradation. These changes were associated with increased expression of matrix metalloproteinase 12 (MMP12) and MMP19, but not MMP9, a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) or ADAMTS5. Together our findings indicate that infection at the time of PNN development interferes with PNN formation, but the nets can reform once the infection and inflammation subside.

3.
Front Immunol ; 13: 919815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967447

RESUMO

Since first reported in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly acquiring mutations, particularly in the spike protein, that can modulate pathogenicity, transmission and antibody evasion leading to successive waves of COVID19 infections despite an unprecedented mass vaccination necessitating continuous adaptation of therapeutics. Small animal models can facilitate understanding host-pathogen interactions, target selection for therapeutic drugs, and vaccine development, but availability and cost of studies in BSL3 facilities hinder progress. To generate a BSL2-compatible in vivo system that specifically recapitulates spike protein mediated disease we used replication competent, GFP tagged, recombinant Vesicular Stomatitis Virus where the VSV glycoprotein was replaced by the SARS-CoV-2 spike protein (rVSV-SARS2-S). We show that infection requires hACE2 and challenge of neonatal but not adult, K18-hACE2 transgenic mice (hACE2tg) leads to productive infection of the lungs and brains. Although disease progression was faster in SARS-CoV-2 infected mice, infection with both viruses resulted in neuronal infection and encephalitis with increased expression of Interferon-stimulated Irf7, Bst2, Ifi294, as well as CxCL10, CCL5, CLC2, and LILRB4, and both models were uniformly lethal. Further, prophylactic treatment targeting the Spike protein (Receptor Binding Domain) with antibodies resulted in similar levels of protection from lethal infection against rVSV-SARS2-S and SARS-CoV-2 viruses. Strikingly, challenge of neonatal hACE2tg mice with SARS-CoV-2 Variants of Concern (SARS-CoV-2-α, -ß, ϒ, or Δ) or the corresponding rVSV-SARS2-S viruses (rVSV-SARS2-Spike-α, rVSV-SARS2-Spike-ß, rVSV-SARS2-Spike-ϒ or rVSV-SARS2-Spike-Δ) resulted in increased lethality, suggesting that the Spike protein plays a key role in determining the virulence of each variant. Thus, we propose that rVSV-SARS2-S virus can be used to understand the effect of changes to SARS-CoV-2 spike protein on infection and to evaluate existing or experimental therapeutics targeting spike protein of current or future VOC of SARS-CoV-2 under BSL-2 conditions.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Modelos Animais de Doenças , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Receptores Imunológicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132958

RESUMO

Immune cells express an array of inhibitory checkpoint receptors that are upregulated upon activation and limit tissue damage associated with excessive response to pathogens or allergens. Mouse leukocyte immunoglobulin like receptor B4 (LILRB4), also known as glycoprotein 49B (gp49B), is an inhibitory checkpoint receptor constitutively expressed in myeloid cells and upregulated in B cells, T cells, and NK cells upon activation. Here, we report that expression of LILRB4, which binds Zika virus (ZIKV), was increased in microglia and myeloid cells infiltrating the brains of neonatal mice with ZIKV-associated meningoencephalitis. Importantly, while C57BL/6 mice developed transient neurological symptoms but survived infection, mice lacking LILRB4/gp49B (LILRB4 KO) exhibited more severe signs of neurological disease and succumbed to disease. Their brains showed increased cellular infiltration but reduced control of viral burden. The reduced viral clearance was associated with altered NK cell function in the absence of LILRB4/gp49B. In naive animals, this manifested as reduced granzyme B responses to stimulation, but in ZIKV-infected animals, NK cells showed phenotypic changes that suggested altered maturation, diminished glucose consumption, reduced IFN-γ and granzyme B production, and impaired cytotoxicity. Together, our data reveal LILRB4/gp49B as an important regulator of NK cell function during viral infections.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica , Células Matadoras Naturais/imunologia , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Infecção por Zika virus/imunologia , Zika virus , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Modelos Animais de Doenças , Feminino , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Masculino , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA/genética , Receptores Imunológicos/biossíntese , Receptores Imunológicos/metabolismo , Linfócitos T/metabolismo , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo
5.
Emerg Microbes Infect ; 10(1): 2076-2089, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34674613

RESUMO

Ebola virus (EBOV) infections cause haemorrhagic fever, multi-organ failure and death, and survivors can experience neurological sequelae. Licensing of monoclonal antibodies targeting EBOV glycoprotein (EBOV-GP) improved its prognosis, however, this treatment is primarily effective during early stages of disease and its effectiveness in reducing neurological sequela remains unknown. Currently, the need for BSL4 containment hinders research and therapeutic development; development of an accessible BSL-2 in vivo mouse model would facilitate preclinical studies to screen and select therapeutics. Previously, we have shown that a subcutaneous inoculation with replicating EBOV-GP pseudotyped vesicular stomatitis virus (rVSVΔG-EBOV-GP or VSV-EBOV) in neonatal mice causes transient viremia and infection of the mid and posterior brain resulting in overt neurological symptoms and death. Here, we demonstrate that the model can be used to test therapeutics that target the EBOV-GP, by using an anti-EBOV-GP therapeutic (SAB-139) previously shown to block EBOV infection in mice and primates. We show that SAB-139 treatment decreases the severity of neurological symptoms and improves survival when administered before (1 day prior to infection) or up to 3 dpi, by which time animals have high virus titres in their brains. Improved survival was associated with reduced viral titres, microglia loss, cellular infiltration/activation, and inflammatory responses in the brain. Interestingly, SAB-139 treatment significantly reduced the severe VSV-EBOV-induced long-term neurological sequalae although convalescent mice showed modest evidence of abnormal fear responses. Together, these data suggest that the neonatal VSV-EBOV infection system can be used to facilitate assessment of therapeutics targeting EBOV-GP in the preclinical setting.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Modelos Animais de Doenças , Ebolavirus/genética , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Humanos , Camundongos Endogâmicos C57BL , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/fisiologia , Proteínas do Envelope Viral/genética
6.
PLoS Pathog ; 16(12): e1008689, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301527

RESUMO

The neurodevelopmental defects associated with ZIKV infections early in pregnancy are well documented, however the potential defects and long-term consequences associated with milder infections in late pregnancy and perinatal period are less well understood. To model these, we challenged 1 day old (P1) immunocompetent C57BL/6 mice with ZIKV. The animals developed a transient neurological syndrome including unsteady gait, kinetic tremors, severe ataxia and seizures 10-15 days post-infection (dpi) but symptoms subsided after a week, and most animals survived. Despite apparent recovery, MRI of convalescent mice show reduced cerebellar volume that correlates with altered coordination and motor function as well as hyperactivity and impulsivity. Persistent mRNA levels of pro-inflammatory genes including Cd80, Il-1α, and Ifn-γ together with Cd3, Cd8 and perforin (PrfA), suggested persistence of low-grade inflammation. Surprisingly, the brain parenchyma of convalescent mice harbor multiple small discrete foci with viral antigen, active apoptotic processes in neurons, and cellular infiltrates, surrounded by activated astrocytes and microglia as late as 1-year post-infection. Detection of negative-sense strand viral RNA and isolation of infectious virus derived from these convalescent mice by blinded passage in Vero cells confirmed long-term persistence of replicating ZIKV in CNS of convalescent mice. Although the infection appears to persist in defined reservoirs within CNS, the resulting inflammation could increase the risk of neurodegenerative disorders. This raises concern regarding possible long-term effects in asymptomatic children exposed to the virus and suggests that long-term neurological and behavioral monitoring as well as anti-viral treatment to clear virus from the CNS may be useful in patients exposed to ZIKV at an early age.


Assuntos
Inflamação/fisiopatologia , Infecção por Zika virus/complicações , Infecção por Zika virus/fisiopatologia , Animais , Encéfalo/virologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Microcefalia/complicações , Microcefalia/virologia , Neurônios/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Células Vero , Zika virus/imunologia , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/virologia
7.
Front Immunol ; 11: 237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133008

RESUMO

Arboviruses including alphavirus are responsible for most emerging infectious diseases worldwide. Recent outbreaks of chikungunya virus serve as a stark reminder to their pathogenic potential. There are no vaccines or therapeutics currently available to contain alphavirus outbreaks. In this study we evaluated the effect of immunomodulatory CpG ODN on the clinical progression of neurotropic Sindbis virus infection. Neonatal C57Bl-6 mice challenged with Sindbis virus AR339 (25 PFU Subcutaneous) infect neurons in the CNS leading to the development of ataxia, seizures, paralysis, and death. We show that systemic administration of CpG ODN modulates the cytokine and chemokine gene expression levels in the CNS and ultimately protects neonatal mice from lethal neurotropic infection. The protection conferred by CpG ODN is controlled by innate immune response and T and B cells were dispensable. Further, protection required Type I, Type II interferons, and TNF as well as functional NK cells, but did not involve iNOS. This study confirms that administration of innate immune modulators can be used as a strategy to boost host innate immune responses and protect against neurotropic viruses reducing their pathogenic footprint.


Assuntos
Infecções por Alphavirus/prevenção & controle , Encefalite Viral/prevenção & controle , Interferons/fisiologia , Células Matadoras Naturais/fisiologia , Oligodesoxirribonucleotídeos/uso terapêutico , Sindbis virus , Fator de Necrose Tumoral alfa/fisiologia , Animais , Chlorocebus aethiops , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/fisiologia , Células Vero
8.
Cell Rep ; 26(7): 1718-1726.e4, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759384

RESUMO

Zaire Ebola virus (ZEBOV) survivors experience visual and CNS sequelae that suggests the ZEBOV glycoprotein can mediate neurotropism. Replication-competent rVSVΔG-ZEBOV-GP vaccine candidate is generally well tolerated; however, its potential neurotropism requires careful study. Here, we show that a single inoculation of rVSVΔG-ZEBOV-GP virus in neonatal C57BL/6 mice results in transient viremia, neurological symptoms, high viral titers in eyes and brains, and death. rVSVΔG-ZEBOV-GP infects the inner layers of the retina, causing severe retinitis. In the cerebellum, rVSVΔG-ZEBOV-GP infects neurons in the granular and Purkinje layers, resulting in progressive foci of apoptosis and neurodegeneration. The susceptibility to infection is not due to impaired type I IFN responses, although MDA5-/-, IFNß-/-, and IFNAR1-/- mice have accelerated mortality. However, boosting interferon levels by co-administering poly(I:C) reduces viral titers in CNS and improves survival. Although these data should not be directly extrapolated to humans, they challenge the hypothesis that VSV-based vaccines are non-neurotropic.


Assuntos
Sistema Nervoso Central/patologia , Doenças Neurodegenerativas/genética , Retina/patologia , Animais , Animais Recém-Nascidos , Apoptose , Humanos , Camundongos , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...