Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Earth Space Chem ; 8(1): 36-53, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38264084

RESUMO

Zircons are found in extraterrestrial rocks from the Moon, Mars, and some differentiated meteorite parent-bodies. These zircons are rare, often of small size, and have been affected by neutron capture induced by cosmic ray exposure. The application of the 176Lu-176Hf decay system to zircons from planetary bodies such as the Moon can help establish the chronology of large-scale differentiation processes such as the crystallization of the lunar magma ocean. Here, we present methods to measure the isotopic composition of Hf of extraterrestrial zircons dated using ID-TIMS U-Pb after chemical abrasion. We introduce a 2-stage elution scheme to separate Hf from Zr while preserving the unused Zr fraction for future isotopic analysis. The effect of neutron capture is also re-examined using the latest thermal neutron capture cross sections and epithermal resonance integrals. Our tests show that the precision of Hf isotopic analyses is close to what is theoretically attainable. We have tested this method to a limited set of zircon grains from lunar rocks returned by the Apollo missions (lunar soil 14163, fragmental polymict breccia 72275, and clast-rich breccia 14321). The model ages align with previously reported values, but further work is needed to assess the chronology of lunar magma ocean crystallization as only a handful of small zircons (5 zircons from 3 samples) were analyzed, and the precision of the analyses can be improved by measuring more and larger lunar zircon grains.

2.
Sci Adv ; 8(46): eabp8415, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383650

RESUMO

The terrestrial planets endured a phase of bombardment following their accretion, but the nature of this late accreted material is debated, preventing a full understanding of the origin of inner solar system volatiles. We report the discovery of nucleosynthetic chromium isotope variability (µ54Cr) in Martian meteorites that represent mantle-derived magmas intruded in the Martian crust. The µ54Cr variability, ranging from -33.1 ± 5.4 to +6.8 ± 1.5 parts per million, correlates with magma chemistry such that samples having assimilated crustal material define a positive µ54Cr endmember. This compositional endmember represents the primordial crust modified by impacting outer solar system bodies of carbonaceous composition. Late delivery of this volatile-rich material to Mars provided an exotic water inventory corresponding to a global water layer >300 meters deep, in addition to the primordial water reservoir from mantle outgassing. This carbonaceous material may also have delivered a source of biologically relevant molecules to early Mars.

3.
Sci Rep ; 10(1): 9641, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541786

RESUMO

For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals. Currently, ocean worlds in the outer Solar System, such as the icy moons Europa and Enceladus, represent potentially habitable environments and are therefore prime targets for the search for biosignatures. For future space exploration missions, novel measurement concepts, capable of detecting low concentrations of biomolecules with significantly improved sensitivity and specificity are required. Here we report on a novel analytical technique for the detection of extremely low concentrations of amino acids using ORIGIN, a compact and lightweight laser desorption ionization - mass spectrometer designed and developed for in situ space exploration missions. The identified unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for a robust identification and quantification of amino acids. With a detection limit of a few fmol mm-2, and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space exploration systems by three orders of magnitude. Moreover, our detection method is not affected by chemical alterations through surface minerals and/or salts, such as NaCl that is expected to be present at the percent level on ocean worlds. Our results demonstrate that ORIGIN is a promising instrument for the detection of signatures of life and ready for upcoming space missions, such as the Europa Lander.


Assuntos
Aminoácidos/análise , Meio Ambiente Extraterreno/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
4.
Meteorit Planet Sci ; 55(12): 2758-2771, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33664561

RESUMO

We present model calculations for cosmogenic production rates in order to quantify the potential effects of spallation and neutron capture reactions on Fe and Ni isotopes in iron meteorites. We aim to determine whether the magnitude of any cosmogenic effects on the isotopic ratios of Fe and/or Ni may hinder the search for nucleosynthetic variations in these elements or in the application of the 60Fe-60Ni chronometer. The model shows that neutron capture reactions are the dominant source of shifts in Fe and Ni isotopic ratios and that spallation reactions are mostly negligible. The effects on 60Ni are sensitive to the Co/Ni ratio in the metal. The total galactic cosmic ray (GCR) effects on 60Ni and 64Ni can be minimized through the choice of normalizing isotopes (61Ni/58Ni versus 62Ni/58Ni). In nearly all cases, the GCR effects (neutron capture and/or spallation) on Fe and Ni isotopic ratios are smaller than the current analytical resolution of the isotopic measurements. The model predictions are compared to the Fe and Ni isotopic compositions measured in a suite of six group IAB irons with a range of cosmic ray exposure histories. The experimental data are in good agreement with the model results. The minimal effects of GCRs on Fe and Ni isotopes should not hamper the search for nucleosynthetic variations in these two elements or the application of the 60Fe-60Ni chronometer in iron meteorites or chondrites.

5.
J Mass Spectrom ; 53(11): 1036-1045, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30069969

RESUMO

The principles of operation and figures of merit of a novel, compact (324 mm × Ø 114 mm; volume approximately 1000 cm3 ) reflectron-type time-of-flight mass spectrometer designed for simultaneous multielement isotope gas analysis is presented. The system, which consists of a pulsed electron impact ion source, is designed either to directly analyse gas samples collected and stored in a compartment or samples extracted from solids using a CW laser system (fibre-coupled diode laser, <75 W, λ = 808 ± 10 nm). In latter case, laser pulses are focussed onto the sample surface to spot sizes of approximately 400 µm in diameter that allows for direct ablation and vaporisation of solid sample material and releasing of trapped gases. A cleaning and trapping system that consists of various cold stages and getters is used before the gas enters the mass analyser. Measurements on various gases were conducted for performance evaluation, ranging from standard gases (Ar, Kr, and Xe) to trapped gases extracted from a sample of the Millbillillie meteorite. At optimised instrument settings, mass spectrometric measurements can be conducted with a mass resolution m/∆m of up to approximately 1200 (16 O and CH4 can be resolved), with a dynamic range of approximately 6 orders of magnitude and a mass calibration accuracy of approximately 100 ppm. The high detection sensitivity of the system allows the detection of gas species at partial pressures down to the low 10-16  mbar level (corresponding to <10 particles/cm3 at standard temperature and pressure, including an ion transmission of approximately 80%). Measurements using standard gases demonstrated that the isotope ratios for a given element can be measured with an accuracy at the per mill level (relative to terrestrial values). Measurements of Ar extracted from the meteorite Millbillillie gave a 36 Ar/38 Ar ratio of approximately 1.6, which is in good agreement with literature values.

6.
Earth Planet Sci Lett ; 503: 29-36, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30846884

RESUMO

The origin of 180W excesses in iron meteorites has been a recently debated topic. Here, a suite of IIAB iron meteorites was studied in order to accurately determine the contribution from galactic cosmic rays (GCR) and from potential decay of 184Os to measured excesses in the minor isotope 180W. In addition to W isotopes, trace element concentrations (Re, Os, Ir, Pt, W) were determined on the same samples, as well as their cosmic ray exposure ages, using 36Cl-36Ar systematics. These data were used in combination with an improved model of GCR effects on W isotopes to correct effects resulting from neutron capture and spallation reactions. After these corrections, the residual 180W excesses correlate with Os/W ratios and indicate a clear contribution from 184Os decay. A newly derived decay constant is equivalent to a half-life for 184Os of (3.38 ± 2.13) × 1013 a. Furthermore, when the data are plotted on an Os-W isochron diagram, the intercept (ε 180Wi = 0.63 ± 0.35) reveals that the IIAB parent body was characterized by a small initial nucleosynthetic excess in 180W upon which radiogenic and GCR effects were superimposed. This is the first cogent evidence for p-process variability in W isotopes in early Solar System material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...