Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Crystallogr ; 48(Pt 6): 1849-1859, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26664343

RESUMO

Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes.

2.
Opt Lett ; 40(10): 2265-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393715

RESUMO

Picosecond x-ray pulses are extracted with a phase-locked x-ray pulse selector at 1.25 MHz repetition rate from the pulse trains of the accelerator-driven multiuser x-ray source BESSY II preserving the peak brilliance at high pulse purity. The system consists of a specially designed in-vacuum chopper wheel rotating with ≈1 kHz angular frequency. The wheel is driven in an ultrahigh vacuum and is levitated on magnetic bearings being capable of withstanding high centrifugal forces. Pulses are picked by 1252 high-precision slits of 70 µm width on the outer rim of the wheel corresponding to a temporal opening window of the chopper of 70 ns. We demonstrate how the electronic phase stabilization of ±2 ns together with an arrival time jitter of the individual slits of the same order of magnitude allows us to pick short single bunch x-ray pulses out of a 200 ns ion clearing gap in a multibunch pulse train as emitted from a synchrotron facility at 1.25 MHz repetition rate with a pulse purity below the shot noise detection limit. The approach is applicable to any high-repetition pulsed radiation source, in particular in the x-ray spectral range up to 10 keV. The opening window in a real x-ray beamline, its stability, as well as the limits of mechanical pulse picking techniques in the MHz range are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...