Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 17(6): 983-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18411421

RESUMO

Diagnosis of eukaryotic parasitic infection using antibody-based tests such as ELISAs (enzyme-linked immunosorbent assays) is often problematic because of the need to differentiate between homologous host and pathogen proteins and to ensure that antibodies raised against a peptide will also bind to the peptide in the context of its three-dimensional protein structure. Filariasis caused by the nematode, Brugia malayi, is an important worldwide tropical disease in which parasites disappear from the bloodstream during daylight hours, thus hampering standard microscopic diagnostic methods. To address this problem, a structural approach was used to develop monoclonal antibodies (mAbs) that detect asparaginyl-tRNA synthetase (AsnRS) secreted from B. malayi. B. malayi and human AsnRS amino acid sequences were aligned to identify regions that are relatively unconserved, and a 1.9 A crystallographic structure of B. malayi AsnRS was used to identify peptidyl regions that are surface accessible and available for antibody binding. Sequery and SSA (Superpositional Structural Analysis) software was used to analyze which of these peptides was most likely to maintain its native conformation as a synthetic peptide, and its predicted helical structure was confirmed by NMR. A 22-residue peptide was synthesized to produce murine mAbs. Four IgG(1) mAbs were identified that recognized the synthetic peptide and the full-length parasite AsnRS, but not human AsnRS. The specificity and affinity of mAbs was confirmed by Western blot, immunohistochemistry, surface plasmon resonance, and enzyme inhibition assays. These results support the success of structural modeling to choose peptides for raising selective antibodies that bind to the native protein.


Assuntos
Anticorpos Monoclonais/imunologia , Brugia Malayi/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Ressonância de Plasmônio de Superfície
2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 856(1-2): 234-8, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17631429

RESUMO

The presence of diadenosine oligophosphates (ApnA) in eukaryotic pathogens has been difficult technically to assess and thus is often overlooked. ApnA are a family of intercellular and intracellular signaling molecules and their biological activities differ relative to the number of phosphate moieties. The application of mass spectrometry to differentiate nucleotide phosphates has been limited by the high salt content in tissue extracts, enzymatic reactions or high performance liquid chromatography (HPLC) buffers, as well as the potential for sample loss when processing and desalting small biological samples. To address this problem a simple reverse phase HPLC (RP-HPLC) method using volatile organic buffers at low pH was developed to create elution profiles of adenosine and diadenosine phosphates. To test this method on a eukaryotic pathogen, small intravascular human filarial parasites (Brugia malayi) were extracted in phosphate buffered saline and a nucleotide phosphate profile was visualized by RP-HPLC. A major peak eluting at 10.4 min was analyzed directly by mass spectrometry and this confirmed the presence of significant quantities of diadenosine triphosphate, Ap3A. Application of this simplified RP-HPLC method will facilitate research on the normal and pathophysiological effects of ApnA particularly in situations when analysis of small biological samples is required.


Assuntos
Brugia Malayi/química , Cromatografia Líquida de Alta Pressão/métodos , Fosfatos de Dinucleosídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais
3.
Anal Biochem ; 328(2): 155-61, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15113691

RESUMO

Class I major histocompatibility complex (MHC) presents intracellular-derived peptides on the majority of cells within the human body. Intracellular proteins are degraded into peptides of 8-11 amino acids, allowing them to fit into the groove of an empty MHC class I molecule. Detection of MHC-associated peptides can be challenging with the major difficulty being the ability to obtain peptides in adequate concentration. Published protocols require a large sample size that is unrealistic for a clinically available sample. Based on calculations, it should be possible to characterize MHC-associated peptides from cells obtained from 30 ml of whole blood. A citric acid wash of whole platelets was implemented to release the peptides with sample cleanup by reversed-phase high-performance liquid chromatography on a peptide trap. Peptides were analyzed by liquid chromatography tandem mass spectrometry. Four peptides were identified from an individual's platelets. The binding motifs of the peptides were consistent with the published MHC binding motif of the individual. Since red blood cells do not express MHC, they were used as a negative control. Using citric acid wash of whole cells and a peptide trap, the more abundant MHC-associated peptides can be identified. This report demonstrates the identification of peptides from a sample volume compatible with reasonable clinical availability.


Assuntos
Plaquetas/química , Complexo Principal de Histocompatibilidade , Aminoácidos/química , Aminoácidos/metabolismo , Análise Química do Sangue , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química
4.
Plant Physiol ; 132(3): 1362-9, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857818

RESUMO

Hydroxyproline (Hyp)-rich glycoproteins (HRGPs) participate in all aspects of plant growth and development. HRGPs are generally highly O-glycosylated through the Hyp residues, which means carbohydrates help define the interactive molecular surface and, hence, HRGP function. The Hyp contiguity hypothesis predicts that contiguous Hyp residues are sites of HRGP arabinosylation, whereas clustered noncontiguous Hyp residues are sites of galactosylation, giving rise to the arabinogalactan heteropolysaccharides that characterize the arabinogalactan-proteins. Early tests of the hypothesis using synthetic genes encoding only clustered noncontiguous Hyp in the sequence (serine [Ser]-Hyp-Ser-Hyp)(n) or contiguous Hyp in the series (Ser-Hyp-Hyp)(n) and (Ser-Hyp-Hyp-Hyp-Hyp)(n) confirmed that arabinogalactan polysaccharide was added only to noncontiguous Hyp, whereas arabinosylation occurred on contiguous Hyp. Here, we extended our tests of the codes that direct arabinogalactan polysaccharide addition to Hyp by building genes encoding the repetitive sequences (alanine [Ala]-proline [Pro]-Ala-Pro)(n), (threonine [Thr]-Pro-Thr-Pro)(n), and (valine [Val]-Pro-Val-Pro)(n), and expressing them in tobacco (Nicotiana tabacum) Bright-Yellow 2 cells as fusion proteins with green fluorescent protein. All of the Pro residues in the (Ala-Pro-Ala-Pro)(n) fusion protein were hydroxylated and consistent with the hypothesis that every Hyp residue was glycosylated with arabinogalactan polysaccharide. In contrast, 20% to 30% of Pro residues remained non-hydroxylated in the (Thr-Pro-Thr-Pro)(n), and (Val-Pro-Val-Pro)(n) fusion proteins. Furthermore, although 50% to 60% of the Hyp residues were glycosylated with arabinogalactan polysaccharide, some remained non-glycosylated or were arabinosylated. These results suggest that the amino acid side chains of flanking residues influence the extent of Pro hydroxylation and Hyp glycosylation and may explain why isolated noncontiguous Hyp in extensins do not acquire an arabinogalactan polysaccharide but are arabinosylated or remain non-glycosylated.


Assuntos
Galactanos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Células Cultivadas , Glicoproteínas/genética , Glicosilação , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Nicotiana/citologia , Nicotiana/genética , Transformação Genética
5.
Mol Biochem Parasitol ; 129(1): 33-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12798504

RESUMO

Aminoacyl-tRNA synthetases (AARS) are a family of enzymes that exhibit primary and various secondary functions in different species. In Brugia malayi, the gene for asparaginyl-tRNA synthetase (AsnRS), a class II AARS, previously has been identified as a multicopy gene encoding an immunodominant antigen in the serum of humans with lymphatic filariasis. However, the relative level of expression and alternative functions of AARS in nematode parasites is not well understood. We searched the Filarial Genome Project database to identify the number and amino acid specificity of B. malayi AARS cDNAs to gain insight into the role of different AARS in filaria. These data showed that cytoplasmic AsnRS was present in five gene clusters, and is the most frequently represented member of the aminoacyl-tRNA synthetase family in adult B. malayi. The relative level of AsnRS transcribed in adult female B. malayi was compared to the levels of a low abundance and medium abundance AARS by quantitative real-time RT-PCR. By this method, AsnRS cDNA was 11 times greater than arginyl-tRNA synthetase and methionyl-tRNA synthetase cDNA. In situ hybridization using a B. malayi AsnRS-specific oligonucleotide probe identified abundant cytoplasmic mRNA, particularly in the hypodermis of adult B. malayi. In the absence of tRNA, AsnRS synthesizes diadenosine triphosphate, a potent regulator of cell growth in other eukaryotes. These data support the hypothesis that all AARS are not equally expressed in B. malayi and that these enzymes may demonstrate important alternative functions in filaria.


Assuntos
Aminoacil-tRNA Sintetases/análise , Aminoacil-tRNA Sintetases/fisiologia , Aspartato-tRNA Ligase , Brugia Malayi/enzimologia , Aminoacil-RNA de Transferência , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Brugia Malayi/genética , Brugia Malayi/ultraestrutura , Bases de Dados Factuais , Fosfatos de Dinucleosídeos/biossíntese , Feminino , Regulação da Expressão Gênica , Hibridização In Situ , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...