Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064618

RESUMO

A strict coordination between pro- and antioxidative molecules is needed for normal animal physiology, although their exact function and dynamics during regeneration and development remains largely unknown. Via in vivo imaging, we were able to locate and discriminate between reactive oxygen species (ROS) in real-time during different physiological stages of the highly regenerative planarian Schmidtea mediterranea. All ROS signals were strong enough to overcome the detected autofluorescence. Combined with an in situ characterisation and quantification of the transcription of several antioxidant genes, our data showed that the planarian gut and epidermis have a well-equipped redox system. Pharmacological inhibition or RNA interference of either side of the redox balance resulted in alterations in the regeneration process, characterised by decreased blastema sizes and delayed neurodevelopment, thereby affecting tails more than heads. Focusing on glutathione, a central component in the redox balance, we found that it is highly present in planarians and that a significant reduction in glutathione content led to regenerative failure with tissue lesions, characterised by underlying stem cell alterations. This exploratory study indicates that ROS and antioxidants are tightly intertwined and should be studied as a whole to fully comprehend the function of the redox balance in animal physiology.


Assuntos
Planárias/fisiologia , Animais , Glutationa/metabolismo , Oxirredução , Planárias/citologia , Planárias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regeneração/fisiologia , Análise Espaço-Temporal , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Aquat Toxicol ; 230: 105672, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33227667

RESUMO

Silver nanoparticles (AgNPs) are widely incorporated in household, consumer and medical products. Their unintentional release via wastewaters raises concerns on their environmental impact, particularly for aquatic organisms and their associated bacterial communities. It is known that the microbiome plays an important role in its host's health and physiology, e.g. by producing essential nutrients and providing protection against pathogens. A thorough understanding of the effects of AgNPs on bacterial communities and on their interactions with the host is crucial to fully assess AgNP toxicity on aquatic organisms. Our results indicate that the microbiome of the invertebrate Schmidtea mediterranea, a freshwater planarian, is affected by AgNP exposure at the tested 10 µg/ml concentration. Using targeted amplification of the bacterial 16S rRNA gene V3-V4 region, two independent experiments on the microbiomes of adult worms revealed a consistent decrease in Betaproteobacteriales after AgNP exposure, mainly attributed to a decrease in Curvibacter and Undibacterium. Although developing tissues and organisms are known to be more sensitive to toxic compounds, three independent experiments in regenerating worms showed a less pronounced effect of AgNP exposure on the microbiome, possibly because underlying bacterial community changes during development mask the AgNP induced effect. The presence of a polyvinyl-pyrrolidone (PVP) coating did not significantly alter the outcome of the experiments compared to those with uncoated particles. The observed variation between the different experiments underlines the highly variable nature of microbiomes and emphasises the need to repeat microbiome experiments, within and between physiological states of the animal.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Betaproteobacteria/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Microbiota/efeitos dos fármacos , Planárias/efeitos dos fármacos , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/microbiologia , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Microbiota/genética , Planárias/crescimento & desenvolvimento , Planárias/microbiologia , Povidona/química , RNA Ribossômico 16S/genética , Prata/química , Poluentes Químicos da Água/química
3.
Nanotoxicology ; 13(4): 476-491, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760077

RESUMO

Silver nanoparticles (AgNPs) belong to the most commercialized nanomaterials, used in both consumer products and medical applications. Despite its omnipresence, in-depth knowledge on the potential toxicity of nanosilver is still lacking, especially for developing organisms. Research on vertebrates is limited due to ethical concerns, and planarians are an ideal invertebrate model to study the effects of AgNPs on stem cells and developing tissues in vivo, as regeneration mimics development by triggering massive stem cell proliferation. Our results revealed a strong interference of AgNPs with tissue- and neuroregeneration which was related to an altered stem cell cycle. The presence of a PVP-coating significantly influenced toxicity outcomes, leading to elevated DNA-damage and decreased stem cell proliferation. Non-coated AgNPs had an inhibiting effect on stem cell and early progeny numbers. Overall, regenerating tissues were more sensitive to AgNP toxicity, and careful handling and appropriate decision making is needed in AgNP applications for healing and developing tissues. We emphasize on the importance of AgNP characterization, as we showed that changes in physicochemical properties influence toxicity.


Assuntos
Dano ao DNA , Homeostase/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Planárias/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Prata/toxicidade , Animais , Ensaio Cometa , Homeostase/genética , Nanopartículas Metálicas/química , Planárias/genética , Planárias/crescimento & desenvolvimento , Regeneração/genética , Prata/química
4.
Dev Biol ; 409(1): 4-15, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26586202

RESUMO

The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed.


Assuntos
Neurônios/metabolismo , Regeneração/fisiologia , Transdução de Sinais , Animais , Invertebrados/fisiologia , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Vertebrados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...