Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 109(3): 469-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24238982

RESUMO

BACKGROUND AND PURPOSE: For dynamic tracking of moving tumors, robust intra-fraction verification was required, to assure that tumor motion was properly managed during the course of radiotherapy. A dual-modality verification system, consisting of an on-board orthogonal kV and planar MV imaging device, was validated and applied retrospectively to patient data. METHODS AND MATERIALS: Real-time tumor tracking (RTTT) was managed by applying PAN and TILT angular corrections to the therapeutic beam using a gimbaled linac. In this study, orthogonal X-ray imaging and MV EPID fluoroscopy was acquired simultaneously. The tracking beam position was derived from respectively real-time gimbals log files and the detected field outline on EPID. For both imaging modalities, the moving target was localized by detection of an implanted fiducial. The dual-modality tracking verification was validated against a high-precision optical camera in phantom experiments and applied to clinical tracking data from a liver and two lung cancer patients. RESULTS: Both verification modalities showed a high accuracy (<0.3mm) during validation on phantom. Marker detection on EPID was influenced by low image contrast. For the clinical cases, gimbaled tracking showed a 90th percentile error (E90) of 3.45 (liver), 2.44 (lung A) and 3.40 mm (lung B) based on EPID fluoroscopy and good agreement with XR-log file data by an E90 of 3.13, 1.92 and 3.33 mm, respectively, during beam on. CONCLUSION: Dual-modality verification was successfully implemented, offering the possibility of detailed reporting on RTTT performance.


Assuntos
Neoplasias/patologia , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Marcadores Fiduciais , Humanos , Movimento (Física) , Aceleradores de Partículas , Imagens de Fantasmas
2.
Radiat Oncol ; 7: 80, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22656865

RESUMO

BACKGROUND: TomoBreast is a unicenter, non-blinded randomized trial comparing conventional radiotherapy (CR) vs. hypofractionated Tomotherapy (TT) for post-operative treatment of breast cancer. The purpose of the trial is to compare whether TT can reduce heart and pulmonary toxicity. We evaluate early toxicities. METHODS: The trial started inclusion in May 2007 and reached its recruitment in August 2011. Women with stage T1-3N0M0 or T1-2N1M0 breast cancer completely resected by tumorectomy (BCS) or by mastectomy (MA) who consented to participate were randomized, according to a prescribed computer-generated randomization schedule, between control arm of CR 25x2 Gy/5 weeks by tangential fields on breast/chest wall, plus supraclavicular-axillary field if node-positive, and sequential boost 8x2 Gy/2 weeks if BCS (cumulative dose 66 Gy/7 weeks), versus experimental TT arm of 15x2.8 Gy/3 weeks, including nodal areas if node-positive and simultaneous integrated boost of 0.6 Gy if BCS (cumulative dose 51 Gy/3 weeks). Outcomes evaluated were the pulmonary and heart function. Comparison of proportions used one-sided Fisher's exact test. RESULTS: By May 2010, 70 patients were randomized and had more than 1 year of follow-up. Out of 69 evaluable cases, 32 were assigned to CR (21 BCS, 11 MA), 37 to TT (20 BCS, 17 MA). Skin toxicity of grade ≥1 at 2 years was 60% in CR, vs. 30% in TT arm. Heart function showed no significant difference for left ventricular ejection fraction at 2 years, CR 4.8% vs. TT 4.6%. Pulmonary function tests at 2 years showed grade ≥1 decline of FEV1 in 21% of CR, vs. 15% of TT and decline of DLco in 29% of CR, vs. 7% of TT (P = 0.05). CONCLUSIONS: There were no unexpected severe toxicities. Short course radiotherapy of the breast with simultaneous integrated boost over 3 weeks proved feasible without excess toxicities. Pulmonary tests showed a slight trend in favor of Tomotherapy, which will need confirmation with longer follow-up of patients. TRIAL REGISTRATION: [corrected] ClinicalTrials.gov NCT00459628.


Assuntos
Neoplasias da Mama/radioterapia , Radioterapia/efeitos adversos , Radioterapia/métodos , Adulto , Idoso , Neoplasias da Mama/patologia , Fracionamento da Dose de Radiação , Feminino , Coração/efeitos da radiação , Humanos , Pulmão/efeitos da radiação , Pessoa de Meia-Idade , Estadiamento de Neoplasias
3.
Phys Med Biol ; 57(10): 2997-3011, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22538289

RESUMO

As mechanical stability of radiation therapy treatment devices has gone beyond sub-millimeter levels, there is a rising demand for simple yet highly accurate measurement techniques to support the routine quality control of these devices. A combination of using high-resolution radiosensitive film and computer-aided analysis could provide an answer. One generally known technique is the acquisition of star shot films to determine the mechanical stability of rotations of gantries and the therapeutic beam. With computer-aided analysis, mechanical performance can be quantified as a radiation isocenter radius size. In this work, computer-aided analysis of star shot film is further refined by applying an analytical solution for the smallest intersecting circle problem, in contrast to the gradient optimization approaches used until today. An algorithm is presented and subjected to a performance test using two different types of radiosensitive film, the Kodak EDR2 radiographic film and the ISP EBT2 radiochromic film. Artificial star shots with a priori known radiation isocenter size are used to determine the systematic errors introduced by the digitization of the film and the computer analysis. The estimated uncertainty on the isocenter size measurement with the presented technique was 0.04 mm (2σ) and 0.06 mm (2σ) for radiographic and radiochromic films, respectively. As an application of the technique, a study was conducted to compare the mechanical stability of O-ring gantry systems with C-arm-based gantries. In total ten systems of five different institutions were included in this study and star shots were acquired for gantry, collimator, ring, couch rotations and gantry wobble. It was not possible to draw general conclusions about differences in mechanical performance between O-ring and C-arm gantry systems, mainly due to differences in the beam-MLC alignment procedure accuracy. Nevertheless, the best performing O-ring system in this study, a BrainLab/MHI Vero system, and the best performing C-arm system, a Varian Truebeam system, showed comparable mechanical performance: gantry isocenter radius of 0.12 and 0.09 mm, respectively, ring/couch rotation of below 0.10 mm for both systems and a wobble of 0.06 and 0.18 mm, respectively. The methodology described in this work can be used to monitor mechanical performance constancy of high-accuracy treatment devices, with means available in a clinical radiation therapy environment.


Assuntos
Fenômenos Mecânicos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia/instrumentação , Algoritmos
4.
Radiother Oncol ; 98(3): 365-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21316786

RESUMO

PURPOSE: VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. MATERIALS AND METHODS: To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. RESULTS: The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E(90%)<0.82 mm and similar performance for pan/tilt. Systematic tracking errors were below 0.14 mm. The 2D tumor trajectories were tracked with an average E(90%) of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. CONCLUSIONS: In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy.


Assuntos
Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Radiografia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...