Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 101(12): 1864-1883, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37737490

RESUMO

The impact of early life nutrition on myelin development is of interest given that cognitive and behavioral function depends on proper myelination. Evidence shows that myelination can be altered by dietary lipid, but most of these studies have been performed in the context of disease or impairment. Here, we assessed the effects of lipid blends containing various levels of a hydrolyzed fat (HF) system on myelination in healthy piglets. Piglets were sow-reared, fed a control diet, or a diet containing 12%, 25%, or 53% HF consisting of cholesterol, fatty acids, monoglycerides, and phospholipid from lecithin. At postnatal day 28/29, magnetic resonance imaging (MRI) was performed to assess changes to brain development, followed by brain collection for microscopic analyses of myelin in targeted regions using CLARITY tissue clearing, immunohistochemistry, and electron microscopy techniques. Sow-reared piglets exhibited the highest overall brain white matter volume by MRI. However, a 25% HF diet resulted in the greatest total myelin density in the prefrontal cortex based on 3D modeling analysis of myelinated filaments. Nodal gap length and g-ratio were inversely correlated with percentage of HF in the corpus callosum, as well as in the PFC and internal capsule for g-ratio, indicating that a 53% HF diet resulted in the thickest myelin per axon and a 0% HF control diet the thinnest in specific brain regions. These findings indicate that HF promoted myelination in the neonatal piglet in a region- and concentration-dependent manner.


Assuntos
Encéfalo , Dieta , Animais , Suínos , Feminino , Animais Recém-Nascidos , Encéfalo/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Gorduras na Dieta , Bainha de Mielina
2.
PLoS One ; 18(5): e0284951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167205

RESUMO

Magnetic resonance imaging is an important tool for characterizing volumetric changes of the piglet brain during development. Typically, an early step of an imaging analysis pipeline is brain extraction, or skull stripping. Brain extractions are usually performed manually; however, this approach is time-intensive and can lead to variation between brain extractions when multiple raters are used. Automated brain extractions are important for reducing the time required for analyses and improving the uniformity of the extractions. Here we demonstrate the use of Mask R-CNN, a Region-based Convolutional Neural Network (R-CNN), for automated brain extractions of piglet brains. We validate our approach using Nested Cross-Validation on six sets of training/validation data drawn from 32 pigs. Visual inspection of the extractions shows acceptable accuracy, Dice coefficients are in the range of 0.95-0.97, and Hausdorff Distance values in the range of 4.1-8.3 voxels. These results demonstrate that R-CNNs provide a viable tool for skull stripping of piglet brains.


Assuntos
Encéfalo , Redes Neurais de Computação , Animais , Suínos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Crânio
3.
Front Psychiatry ; 13: 892259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35815018

RESUMO

Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early influences on neurodevelopment such as nutrition, environmental and genetic factors. As the exposure to early influences can be separated from neurodevelopmental outcomes by many months or years, MRI markers can serve as an important intermediate outcome in multivariate analyses of neurodevelopmental determinants. Key to the success of such work are recent advances in data science as well as the growth of relevant data resources. Multimodal MRI assessment of neurodevelopment can be supplemented with other biomarkers of neurodevelopment such as electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This review focuses on how maternal nutrition impacts infant brain development, with three purposes: (1) to summarize the current knowledge about how nutrition in stages of pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal MRI and other measures of early neurodevelopment; and (3) to discuss potential opportunities for data science and artificial intelligence to advance precision nutrition. We hope this review can facilitate the collaborative march toward precision nutrition during pregnancy and the first year of life.

4.
Front Pediatr ; 8: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117837

RESUMO

Background: Intrauterine growth restriction is a common cause of small for gestational age (SGA) infants worldwide. SGA infants are deficient in digestive enzymes required for fat digestion and absorption compared to appropriate for gestational age (AGA) infants, putting them at risk for impaired neurocognitive development. Objective: The objective was to determine if a hydrolyzed fat (HF) infant formula containing soy free fatty acids, 2-monoacylglycerolpalmitate, cholesterol, and soy lecithin could increase brain tissue incorporation of essential fatty acids or white matter to enhance brain development in SGA and AGA neonatal piglet models. Methods: Sex-matched, littermate pairs of SGA (0.5-0.9 kg) and AGA (1.2-1.8 kg) 2 days old piglets (N = 60) were randomly assigned to control (CON) or HF formula diets in a 2 × 2 factorial design. On day 14, 24 piglets were used for hippocampal RNA-sequencing; the rest began a spatial learning task. On days 26-29, brain structure was assessed by magnetic resonance imaging (MRI). Cerebellum and hippocampus were analyzed for fatty acid content. Results: SGA piglets grew more slowly than AGA piglets, with no effect of diet on daily weight gain or weight at MRI. HF diet did not affect brain weight. HF diet increased relative volumes of 7 brain regions and white matter (WM) volume in both SGA and AGA piglets. However, HF did not ameliorate SGA total WM integrity deficits. RNA sequencing revealed SGA piglets had increased gene expression of synapse and cell signaling pathways and decreased expression of ribosome pathways in the hippocampus compared to AGA. HF decreased expression of immune response related genes in the hippocampus of AGA and SGA piglets, but did not correct gene expression patterns in SGA piglets. Piglets learned the T-maze task at the same rate, but SGA HF, SGA CON, and AGA HF piglets had more accurate performance than AGA CON piglets on reversal day 2. HF increased arachidonic acid (ARA) percentage in the cerebellum and total ARA in the hippocampus. Conclusions: HF enhanced brain development in the neonatal piglet measured by brain volume and WM volume in specific brain regions; however, more studies are needed to assess long-term outcomes.

5.
Proc Natl Acad Sci U S A ; 116(40): 20190-20200, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527230

RESUMO

Maternal infections during pregnancy are associated with increased risk of neurodevelopmental disorders, although the precise mechanisms remain to be elucidated. Previously, we established a maternal immune activation (MIA) model using swine, which results in altered social behaviors of piglet offspring. These behavioral abnormalities occurred in the absence of microglia priming. Thus, we examined fetal microglial activity during prenatal development in response to maternal infection with live porcine reproductive and respiratory syndrome virus. Fetuses were obtained by cesarean sections performed 7 and 21 d postinoculation (dpi). MIA fetuses had reduced brain weights at 21 dpi compared to controls. Furthermore, MIA microglia increased expression of major histocompatibility complex class II that was coupled with reduced phagocytic and chemotactic activity compared to controls. High-throughput gene-expression analysis of microglial-enriched genes involved in neurodevelopment, the microglia sensome, and inflammation revealed differential regulation in primary microglia and in whole amygdala tissue. Microglia density was increased in the fetal amygdala at 7 dpi. Our data also reveal widespread sexual dimorphisms in microglial gene expression and demonstrate that the consequences of MIA are sex dependent. Overall, these results indicate that fetal microglia are significantly altered by maternal viral infection, presenting a potential mechanism through which MIA impacts prenatal brain development and function.


Assuntos
Doenças Fetais/etiologia , Complicações Infecciosas na Gravidez/veterinária , Doenças dos Suínos/virologia , Viroses/veterinária , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Doenças Fetais/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Gravidez , Suínos
6.
Brain Behav Immun ; 81: 455-469, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271868

RESUMO

Neonatal brain development can be disrupted by infection that results in microglial cell activation and neuroinflammation. Studies indicate that polyunsaturated fatty acids (PUFAs) and their metabolites can resolve inflammation. It is not known if dietary PUFA increases lipid metabolites in brain or reduces neuroinflammation in neonates. We hypothesized that dietary PUFAs might suppress neuroinflammation by inhibiting pro-inflammatory cytokine over-production and promoting inflammatory resolution in the periphery and brain. Piglets were obtained on postnatal day (PD) 2 and randomly assigned to herring roe oil (HRO) or control (CON) diet. HRO was included at 2 g/kg powdered diet. HRO increased DHA levels in occipital lobe and the DHA to arachidonic acid (ARA) ratio in hippocampal tissue. HRO decreased ARA metabolites in occipital lobe. HRO failed to attenuate microglial pro-inflammatory cytokine production ex vivo. HRO did not affect fever or circulating resolvin D1 levels. HRO decreased circulating neutrophils and liver inflammatory gene expression, but increased resolution marker gene expression in liver post LPS. HRO upregulated CXCL16, TGFBR1, and C1QA in microglial cells. HRO supplementation exerted beneficial effects on inflammation in the periphery, but further studies are needed to evaluate the specific effects of omega-3 supplementation on microglial cell physiology in the neonate.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Expressão Gênica/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Quimiocina CXCL16/genética , Citocinas/metabolismo , Suplementos Nutricionais , Ovos , Ácidos Graxos Insaturados/metabolismo , Feminino , Peixes/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Masculino , Microglia/metabolismo , Lobo Occipital/efeitos dos fármacos , Lobo Occipital/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Suínos
7.
Front Immunol ; 9: 3150, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30778359

RESUMO

During the postnatal period the developing brain is vulnerable to insults including nutrient insufficiency and infection that may lead to disrupted development and cognitive dysfunction. Since iron deficiency (ID) often presents with immunodeficiency, the objective of this study was to investigate peripheral viremia and inflammation as well as brain microglial phenotype and function when ID and respiratory infection occur simultaneously in a neonatal piglet model. On postnatal day 2 (PD 2) male and female piglets were assigned to one of four treatments and fed either control or ID milk replacer. On PD 8 half the pigs on each diet were inoculated with either vehicle or porcine reproductive and respiratory syndrome virus (PRRSV; P-129). Blood samples were collected prior to inoculation (PD 7) and repeated once weekly. Rectal temperature, feeding score, and sickness behavior were measured daily until PD 28. Hematocrit, hemoglobin, and serum iron were reduced by ID but not PRRSV infection. PRRSV-infected piglets displayed viremia by PD 14; however, those fed control diet had lower viral titer on PD 28, while circulating virus remained elevated in those fed an ID diet, suggesting that ID either impaired immune function necessary for viral clearance or increased viral replication. ID piglets infected with PRRSV displayed reduced sickness behavior compared to those fed control diet on PD 13-15 and 18-20. While ID piglet sickness behavior progressively worsened, piglets fed control diet displayed improved sickness score after PD 21. Microglia isolated from PRRSV piglets had increased MHCII expression and phagocytic activity ex vivo compared to uninfected piglets. ID did not alter microglial activation or phagocytic activity. Similarly, microglial cytokine expression was increased by PRRSV but unaffected by ID, in stark contrast to peripheral blood mononuclear cell (PBMC) cytokine expression, which was increased by infection and generally decreased by ID. Taken together, these data suggest that ID decreases peripheral immune function leading to increased viremia, but immune activity in the brain is protected from acute ID.


Assuntos
Imunidade , Deficiências de Ferro , Ferro da Dieta/metabolismo , Microglia/imunologia , Microglia/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Anemia Ferropriva/veterinária , Animais , Animais Recém-Nascidos , Biomarcadores , Peso Corporal , Mediadores da Inflamação/metabolismo , Fagocitose , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Temperatura
8.
J Nutr ; 146(7): 1420-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281804

RESUMO

BACKGROUND: Cognitive deficits associated with postnatal iron deficiency (ID) suggest abnormal brain development, but little is known about animals with gyrencephalic brains. OBJECTIVE: The objective was to assess the impact of ID on brain development in piglets. METHODS: Male and female Yorkshire piglets were reared from postnatal day (PD) 2 until PD 29 or 30 by using milk replacer adequate [control (CON)] or deficient (100 compared with 10 mg/kg) in iron and subjected to MRI to assess brain macrostructure, microstructure, and metabolites in the dorsal hippocampi and intervening space. After MRI, brains were collected for histology. Hematocrit, hemoglobin, and liver iron were measured to determine iron status. RESULTS: Hematocrit and hemoglobin in ID piglets were less than CON after PD 14 (P < 0.001), and at the study end liver iron in ID piglets was less than CON (P < 0.001). Brain region volumes were not affected by ID, but changes in brain composition were evident. ID piglets had less white matter in 78,305 voxels, with large clusters in the hippocampus and cortex. ID piglets had less gray matter in 13,625 voxels primarily in cortical areas and more gray matter in 28,017 voxels, most notably in olfactory bulbs and hippocampus. The major effect of ID on white matter was supported by lower fractional anisotropy values in the corpus callosum (0.300 compared with 0.284, P = 0.006) and in whole brain white matter (0.313 compared with 0.307, P = 0.002) in ID piglets. In coronal brain sections, corpus callosum width was less (P = 0.043) in ID piglets. Inositol was lower (P = 0.01) and phosphocholine was higher (P = 0.03) in hippocampus of ID piglets. CONCLUSIONS: Postnatal ID in piglets affects brain development, especially white matter. If the effects of ID persist, it might explain the lasting detrimental effects on cognition.


Assuntos
Anemia Ferropriva/veterinária , Encefalopatias/veterinária , Encéfalo/crescimento & desenvolvimento , Doenças dos Suínos/etiologia , Anemia Ferropriva/patologia , Animais , Animais Recém-Nascidos , Encefalopatias/etiologia , Feminino , Masculino , Suínos , Doenças dos Suínos/patologia
9.
Neurobiol Dis ; 63: 201-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316165

RESUMO

Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.


Assuntos
Corpo Estriado/patologia , Espinhas Dendríticas/patologia , Intoxicação por MPTP/patologia , Intoxicação por MPTP/reabilitação , Neurônios/patologia , Condicionamento Físico Animal/métodos , Análise de Variância , Animais , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Teste de Esforço , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lisina/análogos & derivados , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/ultraestrutura , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Coloração pela Prata , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...