Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(5): 1454-1461, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34907807

RESUMO

Sorghum (Sorghum bicolor) leaf sheath blight was observed for the first time in Sinaloa, Mexico in the summer of 2020. Fungal isolates were obtained from symptomatic tissue in potato dextrose agar. Fusarium spp. were associated with symptomatic plants in 10 sampling sites under field conditions. No root and stalk rot was observed during the sampling period. Analysis of fragments of the translation elongation factor alpha and RNA polymerase II second largest subunit genes indicated that all isolates belong to the Fusarium fujikuroi species complex (FFSC). Five groups were delineated from this complex: F. thapsinum, F. verticillioides, Fusarium sp. (four isolates), Fusarium sp. 4 (Fus4), and Fusarium sp. (Fus16), which is closely related to Fusarium madaense. The morphological characteristics (colony color and morphometry of conidia) of isolates with sequence similarities to those of F. thapsinum and F. verticillioides were in the expected range for these species. The morphology of isolates Fus7a, Fus7b, Fus11, and Fus17, as well as Fus4 and Fus16, were similar to those of the FFSC, specially to F. andiyazi and F. madaense. Inoculations of sorghum with representative isolates of F. thapsinum, F. verticillioides and the unidentified Fusarium species resulted in reddish brown lesions similar to those observed under field conditions; the original isolates inoculated were reisolated fulfilling the Koch's postulates. Although leaf sheaths on sorghum plants were heavily damaged, root and stalk rot were not observed in the greenhouse inoculations or under field conditions. Future research should focus on determining the identity of the unknown Fusarium spp. to design control measures for the disease. This is the first report of Fusarium spp. causing sorghum leaf sheath blight in Mexico.


Assuntos
Fusarium , Sorghum , Grão Comestível/microbiologia , México , Filogenia , Sorghum/microbiologia
2.
Braz J Microbiol ; 52(3): 1443-1450, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33956335

RESUMO

Crop yield and quality are affected by the presence of weeds such as Palmer amaranth. Chemical control is the most commonly used method to eradicate weeds, due to its quickness and efficacy. However, the inappropriate use of chemical herbicides can lead to resistant weed biotypes, as well as problems related to environmental pollution and human health hazards. One ecological alternative to combat weeds is the use of deleterious rhizobacteria (DRB). We evaluated the potential bioherbicidal effect in 15 DRB isolates from the rhizosphere of Palmer amaranth, both in vitro and in greenhouse tests. Isolates TR10 and TR18 inhibited seed germination in vitro, whereas the TR25 and TR36 isolates showed the potential to inhibit Palmer amaranth plant development in growth room assays without affecting maize and common bean germination and growth. These four isolates were molecularly identified as either Pseudomonas sp. (TR10 and TR36), Enterobacter sp. (TR18), or Bacillus sp. (TR25). In addition, the production of volatiles and diffusible metabolites were identified as possible mechanisms of germination arrestment and plant development inhibition. This study suggests the bioherbicide potential of some indigenous rhizobacteria against Palmer amaranth.


Assuntos
Amaranthus/microbiologia , Agentes de Controle Biológico , Herbicidas , Plantas Daninhas/microbiologia , Bacillus , Enterobacter , Resistência a Herbicidas , Pseudomonas
3.
J Microbiol Methods ; 101: 18-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24704573

RESUMO

Improved population studies in the fungus Fusarium verticillioides require the development of reliable microsatellite markers. Here we report a set of ten microsatellite loci that can be used for genetic diversity analyses in F. verticillioides, and are equally applicable to other fungi, especially those belonging to the Gibberella fujikuroi clade.


Assuntos
Fusarium/genética , Genoma Fúngico/genética , Repetições de Microssatélites/genética , Tipagem Molecular/métodos , DNA Fúngico/análise , DNA Fúngico/genética , Fusarium/classificação , Gibberella/classificação , Gibberella/genética , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...