Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18987, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347896

RESUMO

Magnetic exchange interactions determine the magnetic groundstate, as well as magnetic excitations of materials and are thus essential to the emerging and fast evolving fields of spintronics and magnonics. The magnetic force theorem has been used extensively for studying magnetic exchange interactions. However, short-ranged interactions in itinerant magnetic systems are poorly described by this method and numerous strategies have been developed over the years to overcome this deficiency. The present study supplies a fully self-consistent method for systematic investigations of exchange interactions beyond the standard Heisenberg model. In order to better describe finite deviations from the magnetic ground state, an extended Heisenberg model, including multi-spin interactions, is suggested. Using cross-validation analysis, we show that this extended Heisenberg model gives a superior description for non-collinear magnetic configurations. This parameterisation method allows us to describe many different itinerant magnetic systems and can be useful for high-throughput calculations.

2.
Sci Rep ; 6: 22912, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975515

RESUMO

Integrating epitaxial and ferromagnetic Europium Oxide (EuO) directly on silicon is a perfect route to enrich silicon nanotechnology with spin filter functionality. To date, the inherent chemical reactivity between EuO and Si has prevented a heteroepitaxial integration without significant contaminations of the interface with Eu silicides and Si oxides. We present a solution to this long-standing problem by applying two complementary passivation techniques for the reactive EuO/Si interface: (i) an in situ hydrogen-Si (001) passivation and (ii) the application of oxygen-protective Eu monolayers-without using any additional buffer layers. By careful chemical depth profiling of the oxide-semiconductor interface via hard x-ray photoemission spectroscopy, we show how to systematically minimize both Eu silicide and Si oxide formation to the sub-monolayer regime-and how to ultimately interface-engineer chemically clean, heteroepitaxial and ferromagnetic EuO/Si (001) in order to create a strong spin filter contact to silicon.

3.
Phys Rev Lett ; 107(13): 137203, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026899

RESUMO

For a nitrogen dimer in insulating MgO, a ferromagnetic coupling between spin-polarized 2p holes is revealed by calculations based on the density functional theory amended by an on-site Coulomb interaction and corroborated by the Hubbard model. It is shown that the ferromagnetic coupling is facilitated by a T-shaped orbital arrangement of the 2p holes, which is in its turn controlled by an intersite Coulomb interaction due to the directionality of the p orbitals. We thus conjecture that this interaction is an important ingredient of ferromagnetism in band insulators with 2p dopants.

4.
Nat Mater ; 9(8): 649-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20639893

RESUMO

We describe the first-principles design and subsequent synthesis of a new material with the specific functionalities required for a solid-state-based search for the permanent electric dipole moment of the electron. We show computationally that perovskite-structure europium barium titanate should exhibit the required large and pressure-dependent ferroelectric polarization, local magnetic moments and absence of magnetic ordering at liquid-helium temperature. Subsequent synthesis and characterization of Eu(0.5)Ba(0.5)TiO(3) ceramics confirm the predicted desirable properties.

5.
Phys Rev Lett ; 97(20): 206802, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-17155702

RESUMO

Thin films of Ag(111) with two-dimensional crystallinity of large lateral coherence grow on Ge(111), free of in-plane registry with the underlying substrate. Ag s-p electrons forming two-dimensional quantum well states scatter coherently at the buried interface potential, resulting in an unexpected set of new quasiparticle states, as observed by angle-resolved photoemission. These new features originate from interactions among Ag quantum well bands, gaining a momentum equivalent to a reciprocal vector of the substrate lattice.

6.
Phys Rev Lett ; 97(2): 026404, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16907467

RESUMO

We propose two novel approaches to study the temperature dependence of the magnetization and the spin polarization at the Fermi level in magnetic compounds, and apply them to half-metallic ferromagnets. We reveal a new mechanism, where the hybridization of states forming the half-metallic gap depends on thermal spin fluctuations and the polarization can drop abruptly at temperatures much lower than the Curie point. We verify this for NiMnSb by ab initio calculations. The thermal properties are studied by mapping ab initio results to an extended Heisenberg model which includes longitudinal fluctuations and is solved by a Monte Carlo method.

7.
Phys Rev Lett ; 96(19): 197203, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16803136

RESUMO

The electronic structure of the VAs compound in the zinc-blende structure is investigated using a combined density-functional and dynamical mean-field theory approach. Contrary to predictions of a ferromagnetic semiconducting ground state obtained by density-functional calculations, dynamical correlations induce a closing of the gap and produce a half-metallic ferromagnetic state. These results emphasize the importance of dynamic correlations in materials suitable for spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...