Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666570

RESUMO

The interaction between ammonia (NH3) and (alumino)silicates is of fundamental and applied importance, yet the specifics of NH3 adsorption on silicate surfaces remain largely unexplored, mainly because of experimental challenges related to their electrically insulating nature. An example of this knowledge gap is evident in the context of ice nucleation on silicate dust, wherein the role of NH3 for ice nucleation remains debated. This study explores the fundamentals of the interaction between NH3 and microcline feldspar (KAlSi3O8), a common aluminosilicate with outstanding ice nucleation abilities. Atomically resolved non-contact atomic force microscopy, x-ray photoelectron spectroscopy, and density functional theory-based calculations elucidate the adsorption geometry of NH3 on the lowest-energy surface of microcline, the (001) facet, and its interplay with surface hydroxyls and molecular water. NH3 and H2O are found to adsorb molecularly in the same adsorption sites, creating H-bonds with the proximate surface silanol (Si-OH) and aluminol (Al-OH) groups. Despite the closely matched adsorption energies of the two molecules, NH3 readily yields to replacement by H2O, challenging the notion that ice nucleation on microcline proceeds via the creation of an ordered H2O layer atop pre-adsorbed NH3 molecules.

2.
J Phys Chem Lett ; 15(1): 15-22, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156776

RESUMO

Microcline feldspar (KAlSi3O8) is a common mineral with important roles in Earth's ecological balance. It participates in carbon, potassium, and water cycles, contributing to CO2 sequestration, soil formation, and atmospheric ice nucleation. To understand the fundamentals of these processes, it is essential to establish microcline's surface atomic structure and its interaction with the omnipresent water molecules. This work presents atomic-scale results on microcline's lowest-energy surface and its interaction with water, combining ultrahigh vacuum investigations by noncontact atomic force microscopy and X-ray photoelectron spectroscopy with density functional theory calculations. An ordered array of hydroxyls bonded to silicon or aluminum readily forms on the cleaved surface at room temperature. The distinct proton affinities of these hydroxyls influence the arrangement and orientation of the first water molecules binding to the surface, holding potential implications for the subsequent condensation of water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...