Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21347, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37908711

RESUMO

In the quest for sustainable waste management solutions, this study explores the integration of ultrasonic pretreatment as a preparatory step for the anaerobic digestion of landfill leachate. Employing response surface methodology (RSM) coupled with central composite design (CCD), we systematically optimize the process parameters, including pH, inoculum volume, and ultrasonic pretreatment duration, to maximize the yield of bio-methane potential (ml CH4/g VS). The results demonstrate the effective application of RSM-CCD for predicting and modelling methane generation, with a highly significant model (R2 = 0.899). The optimized conditions reveal a remarkable biomethane potential of 177 ml CH4/g VS. Additionally, this study contributes to the understanding of the positive effect of ultrasound pretreatment on the anaerobic digestion of landfill leachate, and the quality of the digestate obtained after anaerobic digestion was studied and different valorisations were proposed.

2.
ACS Omega ; 4(5): 9434-9445, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460034

RESUMO

Valorization of agri-food organic waste in order to reach zero waste using cleaner methods is still a challenge. Therefore, both anaerobic co-digestion (ACD) (biological process) and adsorption (physicochemical process) were used in combination for this objective. ACD allows the activation of biodegradable organic matter by microbial action and produces a digestate (co-product). This coproduct was used as a raw material to produce porous carbon having a high specific surface area after chemical treatment using sulfuric acid and thermal activations at temperature T = 350 °C. The resulted material was used for the preparation of core-shell particles with a core made of porous carbon and a shell consisting mainly of alginate and a calcium ion layer. The final core-shell particles were then used for dye treating wastewater and solving the solid-liquid separation problem in the adsorption process. We show here that in the ACD process, significant bio-methane potential (BMP) was produced. Furthermore, the data indicate that 153 L CH4 kg·SV-1 of BMP was produced under optimum conditions of pH = 8 and inoculum/load ratio = 1.2. The overall results concerning the methylene blue (MB) adsorption from water onto the core-shell particles show the occurrence of a maximum adsorbed amount equal to 26.178 mg g-1, and good agreement was found between the experimental adsorption data with pseudo-second-order and Langmuir theoretical models. The response surface methodology coupled with the central composite design has allowed the identification of optimal conditions for MB removal and has led to the elucidation of adsorption mechanism and the regeneration of the adsorbent without the occurrence of the solid/liquid separation problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...