Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(44): 13155-13165, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787013

RESUMO

Oils spilled into surface water require effective and timely treatment. In this paper, we report on a low-molecular-weight gelator that can form gels in organic and aqueous phases. The aqueous gel was observed to absorb oils, which is proposed as a new class of materials for remediating oil spilled into surface water. The gels and the low-molecular-weight gelator have both fundamental and applied significance. Fundamentally, identifying the mechanisms that govern the formation of these gels and their resultant mechanical properties is of interest. Subsequently, these fundamental insights aid in the optimization of these gels for addressing spilled oil. First, we briefly compare the organic and aqueous gels qualitatively before focusing on the aqueous gel. Second, we demonstrate the ability of the aqueous gel to wick oils through experiments in a Hele-Shaw cell and compare our results to the Washburn equation for porous media. The Washburn equation is not entirely adequate in describing our results due to the change in volume of the porous media during the wicking process. Finally, we investigate mechanisms proposed to govern the formation of low-molecular-weight gels in the literature through rheological shear measurements during gel formation. Our experiments suggest that the proposed mechanisms are applicable to our aqueous gels, growing as anisotropic crystal networks with fractal dimensions between one and two dimensions from temporally sporadic nucleation sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...