Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5021, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866768

RESUMO

A pressing challenge in spatially resolved transcriptomics (SRT) is to benchmark the computational methods. A widely-used approach involves utilizing simulated data. However, biases exist in terms of the currently available simulated SRT data, which seriously affects the accuracy of method evaluation and validation. Herein, we present scCube ( https://github.com/ZJUFanLab/scCube ), a Python package for independent, reproducible, and technology-diverse simulation of SRT data. scCube not only enables the preservation of spatial expression patterns of genes in reference-based simulations, but also generates simulated data with different spatial variability (covering the spatial pattern type, the resolution, the spot arrangement, the targeted gene type, and the tissue slice dimension, etc.) in reference-free simulations. We comprehensively benchmark scCube with existing single-cell or SRT simulators, and demonstrate the utility of scCube in benchmarking spot deconvolution, gene imputation, and resolution enhancement methods in detail through three applications.


Assuntos
Simulação por Computador , Perfilação da Expressão Gênica , Software , Transcriptoma , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Humanos , Análise de Célula Única/métodos , Animais , Algoritmos
2.
J Hazard Mater ; 465: 133233, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38118196

RESUMO

The widespread use of nanoparticles in the food industry has raised concerns regarding their potential adverse effects on human health, particularly in vulnerable populations, including pregnant mothers and fetuses. However, studies evaluating the reproductive and developmental toxicity of food-grade nanomaterials are limited. This study investigated the potential risks of prenatal dietary exposure to food-grade silica nanoparticles (E 551) on maternal health and fetal growth using conventional toxicological and epigenetic methods. The results showed that prenatal exposure to a high-dose of E 551 induces fetal resorption. Moreover, E 551 significantly accumulates in maternal and fetal livers, triggering a hepatic inflammatory response. At the epigenetic level, global DNA methylation is markedly altered in the maternal and fetal livers. Genome-wide DNA methylation sequencing revealed affected mCG, mCHG, and mCHH methylation landscapes. Subsequent bioinformatic analysis of the differentially methylated genes suggests that E 551 poses a risk of inducing metabolic disorders in maternal and fetal livers. This is further evidenced by impaired glucose tolerance in pregnant mice and altered expression of key metabolism-related genes and proteins in maternal and fetal livers. Collectively, the results of this study highlighted the importance of epigenetics in characterizing the potential toxicity of maternal exposure to food-grade nanomaterials during pregnancy.


Assuntos
Exposição Materna , Doenças Metabólicas , Gravidez , Humanos , Feminino , Animais , Camundongos , Metilação de DNA , Feto , Epigênese Genética , Fígado/metabolismo , Doenças Metabólicas/metabolismo
3.
Adv Sci (Weinh) ; 10(32): e2301977, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824217

RESUMO

Gastric cancer stem cells (GCSCs) are self-renewing tumor cells that govern chemoresistance in gastric adenocarcinoma (GAC), whereas their regulatory mechanisms remain elusive. Here, the study aims to elucidate the role of ATOH1 in the maintenance of GCSCs. The preclinical model and GAC sample analysis indicate that ATOH1 deficiency is correlated with poor GAC prognosis and chemoresistance. ScRNA-seq reveals that ATOH1 is downregulated in the pit cells of GAC compared with those in paracarcinoma samples. Lineage tracing reveals that Atoh1 deletion strongly confers pit cell stemness. ATOH1 depletion significantly accelerates cancer stemness and chemoresistance in Tff1-CreERT2; Rosa26Tdtomato and Tff1-CreERT2; Apcfl/fl ; p53fl/fl (TcPP) mouse models and organoids. ATOH1 deficiency downregulates growth arrest-specific protein 1 (GAS1) by suppressing GAS1 promoter transcription. GAS1 forms a complex with RET, which inhibits Tyr1062 phosphorylation, and consequently activates the RET/AKT/mTOR signaling pathway by ATOH1 deficiency. Combining chemotherapy with drugs targeting AKT/mTOR signaling can overcome ATOH1 deficiency-induced chemoresistance. Moreover, it is confirmed that abnormal DNA hypermethylation induces ATOH1 deficiency. Taken together, the results demonstrate that ATOH1 loss promotes cancer stemness through the ATOH1/GAS1/RET/AKT/mTOR signaling pathway in GAC, thus providing a potential therapeutic strategy for AKT/mTOR inhibitors in GAC patients with ATOH1 deficiency.


Assuntos
Adenocarcinoma , Proteína Vermelha Fluorescente , Neoplasias Gástricas , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
J Pharm Anal ; 13(8): 926-941, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37719199

RESUMO

Gaining a better understanding of autoprotection against drug-induced liver injury (DILI) may provide new strategies for its prevention and therapy. However, little is known about the underlying mechanisms of this phenomenon. We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells (NPCs) in autoprotection against DILI, using acetaminophen (APAP) as a model drug. Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice, followed by a higher dose in a secondary challenge. NPC subsets and dynamic changes were identified in the APAP (hepatotoxicity-sensitive) and APAP-resistant (hepatotoxicity-resistant) groups. A chemokine (C-C motif) ligand 2+ endothelial cell subset almost disappeared in the APAP-resistant group, and an R-spondin 3+ endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection. Moreover, the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation. DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group. In addition, the natural killer cell subsets NK-3 and NK-4 and the Sca-1-CD62L+ natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways. Furthermore, macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity. Overall, this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.

5.
J Pharm Anal ; 13(4): 376-387, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37181291

RESUMO

Panax ginseng (PG) and Panax notoginseng (PN) are highly valuable Chinese medicines (CM). Although both CMs have similar active constituents, their clinical applications are clearly different. Over the past decade, RNA sequencing (RNA-seq) analysis has been employed to investigate the molecular mechanisms of extracts or monomers. However, owing to the limited number of samples in standard RNA-seq, few studies have systematically compared the effects of PG and PN spanning multiple conditions at the transcriptomic level. Here, we developed an approach that simultaneously profiles transcriptome changes for multiplexed samples using RNA-seq (TCM-seq), a high-throughput, low-cost workflow to molecularly evaluate CM perturbations. A species-mixing experiment was conducted to illustrate the accuracy of sample multiplexing in TCM-seq. Transcriptomes from repeated samples were used to verify the robustness of TCM-seq. We then focused on the primary active components, Panax notoginseng saponins (PNS) and Panax ginseng saponins (PGS) extracted from PN and PG, respectively. We also characterized the transcriptome changes of 10 cell lines, treated with four different doses of PNS and PGS, using TCM-seq to compare the differences in their perturbing effects on genes, functional pathways, gene modules, and molecular networks. The results of transcriptional data analysis showed that the transcriptional patterns of various cell lines were significantly distinct. PGS exhibited a stronger regulatory effect on genes involved in cardiovascular disease, whereas PNS resulted in a greater coagulation effect on vascular endothelial cells. This study proposes a paradigm to comprehensively explore the differences in mechanisms of action between CMs based on transcriptome readouts.

6.
Comput Struct Biotechnol J ; 20: 3545-3555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811838

RESUMO

COVID-19 has caused severe threats to lives and damage to property worldwide. The immunopathology of the disease is of particular concern. Currently, researchers have used gene co-expression networks (GCNs) to deepen the study of molecular mechanisms of immune responses to COVID-19. However, most efforts have not fully explored dynamic changes of cell-type-specific molecular networks in the disease process. This study proposes a GCN construction pipeline named single-cell Disease Progression cellular module analysis (scDisProcema), which can trace dynamic changes of immune system response during disease progression using single-cell data. Here, scDisProcema considers changes in cell fate and expression patterns during disease development, identifying gene modules responsible for different immune cells. The hub genes are screened for each module by the specific expression level and the intercellular connectivity of modules. Based on functional items enriched by each gene module, we elucidate the biological processes of different cells involved in disease development and explain the molecular mechanisms underlying the process of cell depletion or proliferation caused by disease. Compared with traditional WGCNA methods, scDisProcema can make more convenient use of the heterogeneity information provided by scRNA-seq data and has great potential in exploring molecular changes during disease progression and organ development.

7.
Sci Total Environ ; 672: 798-805, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978542

RESUMO

Several studies indicate that human exposure to plasticizers via dermal pathway is not negligible, but the dermal bioaccessibility of phthalates and alternative plasticizers from the important environmental matrix including indoor dust and clothing and the importance weight of dermal exposure to those pollutants have been poorly studied. An in vitro physiologically based extraction test was employed to investigate the dermal bioaccessibility of target phthalates and alternative plasticizers from indoor dust and clothing. Temperature, incubation time, sweat/sebum ratio and solid/liquid ratio were selected to study their effects on the bioaccessibility. The bioaccessibility of Diethyl phthalates (DEP), dibutyl phthalate (DBP), bis-2-ethylhexyl phthalate (DEHP), Acetyl tributyl citrate (ATBC), bis-2-ethylhexyladipate (DEHA) and bis-2-ethylhexyl terephthalate (DEHT) in indoor dust were 66.20 ±â€¯1.93%, 94.27 ±â€¯1.31%, 80.37 ±â€¯8.09%, 75.02 ±â€¯2.12%, 94.50 ±â€¯3.42% and 74.09 ±â€¯3.79%, respectively, under the condition of 1:1 sweat/sebum ratio, 1/100 solid/liquid ratio (indoor dust), 1:1 area/area ratio (1:1, clothing) and 90 min incubation time at 36.3 °C which are chosen based on the experimental results and human physical conditions. DBP showed the highest bioaccessibility in all samples. The time course of the plasticizer release was fitted to a first-order one-compartment model. DBP showed the highest release rate (k1) calculated from the model, which was consistent with the bioaccessibility result. Risk assessment indicated that dermal exposure of DBP was an important exposure route, accounting for about 21.58% of total intake, and indoor dust was an important exposure media when considering the dermal bioaccessibility.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Vestuário , Poeira/análise , Exposição Ambiental/análise , Plastificantes/análise , Pele/metabolismo , Dibutilftalato , Exposição Ambiental/estatística & dados numéricos , Humanos , Ácidos Ftálicos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...