Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(26): 13409-17, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24879413

RESUMO

An effective approach has been used to synthesize N-doped HTiNbO5 (denoted as N-HTiNbO5) with a better intercalation property. The synthesis of polyaniline (PANI) with N-HTiNbO5 to form PANI-N-HTiNbO5 lamellar nanocomposites by in situ polymerization using the aniline (ANI) intercalation compound ANI/N-HTiNbO5 as the intermediate has been investigated. The resulting PANI-N-HTiNbO5 nanocomposite showed a better crystallinity with a monolayer of PANI within the interlayers of N-HTiNbO5, because nitrogen doping can affect the surface charge distribution of [TiNbO5](-) layers. The cyclic voltammetry (CV) results indicated that the PANI-N-HTiNbO5 nanocomposite had good redox activity and electrochemical-cycling stability in acidic solution. The visible-light response of the PANI-N-HTiNbO5 nanocomposite was enhanced through N-doping, acid exchange, and the intercalation of PANI. The PANI-N-HTiNbO5 nanocomposite showed the highest activity with 97.8% methylene blue (MB) photodegraded in 170 min under visible light irradiation. The significant enhancement of photocatalytic performance can be attributed to the high efficiency of charge separation, induced by the synergistic effect between PANI and N-HTiNbO5. In addition, the PANI-N-HTiNbO5 nanocomposite had a high thermal and photodegradation stability due to the intercalation reaction at the molecular level.

2.
J Org Chem ; 75(12): 4004-13, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20507076

RESUMO

A series of pyrrole/polycyclic aromatic unit hybrid fluorophores was developed by a two-stage synthetic strategy. Their central aryl-substituted pyrrole cores were constructed by a Paal-Knorr pyrrole synthesis reaction. The reaction conditions and mechanism are also discussed in detail. End-capping triflate onto the central pyrrole core enables the core to incorporate various polycyclic aromatic units. The Buchwald-Hartwig amination reaction and the Suzuki-Miyaura cross-coupling reaction were adopted to incorporate the triflate end-capping pyrrole with N-phenylnaphthalen-1-amine and various polycyclic aromatic units to form the hybrid fluorophores. The photophysical properties and thermal properties of the fluorophores were characterized. Most of the pyrrole fluorophores emitted blue light and exhibited high quantum efficiency. The fluorescence properties of these pyrrole fluorophores were induced by manipulating the surrounding polycyclic aromatic units. When the central pyrrole core was incorporated with amino or naphthalene moieties, the fluorescence efficiency and thermal stability of fluorophores 1 and 2 were low (phi(f) < 0.35, T(g) <140 degrees C). Rigid and highly fluorescent moieties (such as pyrenyl, 9,9-dimethylfluorenyl, 9,9-diphenylfluorenyl, and spirofluorenyl groups) were grafted onto the pyrrole. Fluorophores 3-6 had high fluorescence efficiency (phi(f) > 0.99) and stable glassy morphology (the T(g) value of the fluorophore 6 was as high as 220 degrees C). Results of this study demonstrate that the sterically induced fluorescence of crowded pyrrole and the fluorescent polycyclic aromatic units significantly affect the emission properties of the hybrid fluorophores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...