Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Ther ; 20(2): 651-657, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687936

RESUMO

BACKGROUND: The feasibility and safety of enhanced recovery after surgery (ERAS) for percutaneous computed tomography (CT)-guided microwave ablation (MWA) for treating lung nodules remain unclear. METHODS AND MATERIALS: A total of 409 patients with lung tumors treated at the Department of Thoracic Surgery, First Affiliated Hospital of Guangxi Medical University from August 2020 to May 2023 were enrolled. Perioperative data, including baseline characteristics, operation time, postoperative pain score (visual analog scale [VAS]), hospitalization expenses, postoperative complications, total hospital stay, and patient satisfaction, were observed and recorded. RESULTS: No perioperative mortality occurred in either group and complete ablation was achieved in all patients. Patients in the ERAS group had significantly shorter hospital stays (P < 0.001), reduced operation times (P = 0.047), lower hospitalization expenses (P < 0.001), lower VAS scores (P < 0.001), and fewer complications (P = 0.047) compared with the traditional group. CONCLUSIONS: ERAS for percutaneous CT-guided MWA (ERAA) is safe, effective, and feasible for the treatment of lung nodules.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Neoplasias Pulmonares , Micro-Ondas , Tomografia Computadorizada por Raios X , Humanos , Masculino , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Feminino , Micro-Ondas/uso terapêutico , Pessoa de Meia-Idade , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Idoso , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Tempo de Internação/estatística & dados numéricos , Cirurgia Assistida por Computador/métodos , Resultado do Tratamento , Ablação por Radiofrequência/métodos , Ablação por Radiofrequência/efeitos adversos , Adulto , Estudos de Viabilidade , Duração da Cirurgia
2.
J Cancer Res Ther ; 19(6): 1533-1543, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156919

RESUMO

BACKGROUND: Lymph node metastasis (LNM) is an essential factor affecting the prognosis of patients with lung squamous cell carcinoma (LUSC), as well as a critical consideration for the choice of treatment strategy. Exploring effective methods for predicting LNM in LUSC may benefit clinical decision making. MATERIALS AND METHODS: We used data collected from the Surveillance, Epidemiology, and End Results (SEER) database to develop machine learning algorithm classifiers, including boosted trees (BTs), based on the primary clinical parameters of patients to predict LNM in LUSC. Training on a large-sample training cohort (n = 8,063) allowed for the construction of several concise classifiers for LNM prediction in LUSC, which were then validated using test and in-house cohorts (n = 2,017 and 57, respectively). RESULTS: The six classifiers established in this research enabled distinction between patients with and without LNM. Among these classifiers, the BT classifier was the top performer, with accuracy, F1 scores, precision, recall, sensitivity, and specificity values of 0.654, 0.621, 0.654, 0.592, 0.592, and 0.711, respectively. The precision recall (PR) and receiver operating characteristic (ROC) (with area under the curve = 0.714) curves also supported this result, which was validated by the in-house cohort. Notably, the tumor stage was a critical factor in determining LNM in patients with LUSC. CONCLUSIONS: The use of classifiers, especially the BT classifier, may serve as a useful tool for improving clinical precision and individualized treatment of patients with LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Metástase Linfática/patologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Algoritmos , Pulmão/patologia , Linfonodos/patologia
3.
Dalton Trans ; 52(13): 3921-3941, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36939177

RESUMO

Perovskite nanomaterials have been highly thought as next-generation light emitters after recent development owing to their benefits of simple synthesis, low-cost, large-area, and wide color gamut. Encouragingly, the external quantum efficiencies (EQEs) of green, red, and near-infrared perovskite light-emitting diodes (PeLEDs) have exceeded more than 20%. However, the performance of the blue PeLEDs is still lower than other analogs, which severely limits the applications of PeLEDs in future full-color displays. Herein, we have reviewed the advances in blue perovskite NCs and their applications in blue PeLEDs. Promising blue perovskite emitters and strategies for fabricating highly efficient blue PeLEDs based on perovskite NCs are investigated and highlighted. Moreover, we point out the main challenges in blue perovskite NC LEDs including low electroluminescence efficiency (EL), spectral instability, the difficulty of charge injection, and device optimization. The perspectives for the further development of blue PeLEDs are also presented.

4.
Small ; 18(45): e2203565, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156855

RESUMO

The photodetector (PD) is the key component to realize efficient optoelectronic conversion signal in the visible light communication (VLC) system. The response speed directly determines the bandwidth of the whole system. Metal halide perovskite is a neotype of low-cost solution processing semiconductor, with strong optical absorption, low trap density, and high carrier mobility, thus has been widely explored in photoelectric detection applications. However, previously reported perovskite polycrystalline photodetectors exhibit limited response speed due to the existence of grain boundaries. Here, an improved confined space method is developed through adjusting the heating area to control nucleation, resulting in centimeter scale fully inorganic perovskite CsPbBr3 thin single crystal films (SCFs) (<40 µm). The smooth surface and high crystallinity of CsPbBr3 SCFs render admirable exciton lifetime. The planar metal-semiconductor-metal photodetector using CsPbBr3 SCF as the photosensitive layer demonstrates a limit response time of 200/300 ns and a VLC within 100-500 kHz frequency for both 365 nm and white light, which is superior to previously reported CsPbBr3 polycrystalline film and single crystal photodetectors.

5.
ACS Appl Mater Interfaces ; 13(25): 29827-29834, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34142800

RESUMO

MAPbI3, one of the archetypical metal halide perovskites, is an exciting semiconductor for a variety of optoelectronic applications. The photoexcited charge-carrier diffusion and recombination are important metrics in optoelectronic devices. Defects in grain interiors and boundaries of MAPbI3 films cause significant nonradiative recombination energy losses. Besides defect impact, carrier diffusion and recombination anisotropy introduced by structural and electronic discrepancies related to the crystal orientation are vital topics. Here, large-sized MAPbI3 single crystals (SCs) were grown, with the (110), (112), (100), and (001) crystal planes simultaneously exposed through the adjusting ratios of PbI2 to methylammonium iodide (MAI). Such MAPbI3 SCs exhibit a weak n-type semiconductor character, and the Fermi levels of these planes were slightly different, causing a homophylic p-n junction at crystal ledges. Utilizing MAPbI3 SCs, the photoexcited carrier diffusion and recombination within the crystal planes and around the crystal ledges were investigated through time-resolved fluorescence microscope. It is revealed that both the (110) and (001) planes were facilitated to be exposed with more MAI in the growth solutions, and the photoluminescence (PL) of these planes manifesting a red-shift, longer carrier lifetime, and diffusion length compared with the (100) and (112) planes. A longer carrier diffusion length promoted photorecycling. However, excessive MAI-assisted grown MAPbI3 SCs could increase the radiative recombination. In addition, it revealed that the carrier excited within the (001) and (112) planes was inclined to diffuse toward each other and was favorable to be extracted out of the grain boundaries or crystal ledges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...