Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38788722

RESUMO

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Assuntos
Colite , Camundongos Knockout , Receptores Adrenérgicos alfa 2 , Células-Tronco , Tiramina , Animais , Tiramina/metabolismo , Tiramina/farmacologia , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Camundongos , Receptores Adrenérgicos alfa 2/metabolismo , Células-Tronco/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Tirosina Descarboxilase/metabolismo , Enterococcus faecalis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ioimbina/farmacologia , Modelos Animais de Doenças , Enterococcus/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Proliferação de Células , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana
2.
Discov Med ; 36(184): 936-945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798253

RESUMO

BACKGROUND: Inflammation is a key pathological process in bacterial meningitis, and the transforming growth factor-beta-activated kinase 1 (TAK1)/nuclear factor-kappa B (NF-κB) pathway is implicated in the activation of microglia and the production of inflammatory factors. Interleukin (IL)-10 is an anti-inflammatory cytokine acting in an autocrine fashion in macrophages to limit inflammatory responses by decreasing the production of pro-inflammatory cytokines. This paper investigates how IL-10 can inhibit microglia activation and reduce the inflammatory response of nervous system diseases. METHODS: This study used a pneumococcal-induced in Pneumococcal meningitis (PM) C57BL/6 mice and BV-2 cells model of microglial activation, assessing the effects of IL-10 on the TAK1/NF-κB pathway. The impact of IL-10 on microglial autophagy was investigated through western blot and immunofluorescence. The effects of IL-10 were evaluated by examining cellular activation markers and the activity of molecular signaling pathways (such as phosphorylation levels of TAK1 and NF-κB). RESULTS: Pneumococcus induced the activation of microglia and reduced IL-10. IL-10 inhibited the TAK1/NF-κB pathway, reducing the pneumococcal-induced inflammatory response in microglia. IL-10 ameliorated pneumococcal infection-induced microglial injury by inhibiting autophagy. Animal experiment results also showed that IL-10 inhibited inflammation and autophagy during Pneumococcal meningitis in mice. CONCLUSION: Our study demonstrates that IL-10 reduces the inflammatory response of microglia by inhibiting the TAK1/NF-κB pathway. Additionally, IL-10 ameliorates pneumococcal infection-induced microglial injury by inhibiting the process of autophagy. These results provide a new theoretical basis and offer new insights for developing strategies to treat bacterial meningitis.


Assuntos
Interleucina-10 , MAP Quinase Quinase Quinases , Meningite Pneumocócica , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Animais , Interleucina-10/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Camundongos , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/imunologia , Meningite Pneumocócica/patologia , NF-kappa B/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inflamação/patologia , Autofagia/efeitos dos fármacos , Modelos Animais de Doenças , Linhagem Celular , Streptococcus pneumoniae
3.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479384

RESUMO

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico/farmacologia , Linfócitos T CD8-Positivos
5.
PeerJ ; 8: e9623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821543

RESUMO

BACKGROUND: Metagenome next-generation sequencing (mNGS) is a valuable diagnostic tool that can be used for the identification of early pathogens of acute respiratory distress syndrome (ARDS) in severe pneumonia. Little is known about the use of this technology in clinical application and the evaluation of the prognostic value of ARDS. METHODS: We performed a retrospective cohort study of patients with ARDS caused by severe pneumonia. Samples were collected from patients in the intensive care unit (ICU) of Jiangmen Central Hospital from January 2018 to August 2019. The no-next generation sequencing (NGS) group was composed of patients given conventional microbiological tests to examine sputum, blood, or bronchoalveolar lavage fluid. The NGS group was composed of patients tested using mNGS and conventional microbiological tests. We evaluated the etiological diagnostic effect and clinical prognostic value of mNGS in patients with ARDS caused by severe pneumonia. RESULTS: The overall positive rate (91.1%) detected by the mNGS method was significantly higher than that of the culture method (62.2%, P = 0.001), and antibody plus polymerase chain reaction (28.9%, P < 0.001). Following adjustment of the treatment plan based on microbial testing results, the Acute Physiology and Chronic Health Evaluation-II (APACHE II) score of the NGS group was lower than that of the no-NGS group 7 days after treatment (P < 0.05). The 28-day mortality rate of the NGS group was significantly lower than that of the no-NGS group (P < 0.05). Longer ICU stay, higher APACHE II score and sequential organ failure assessment score were risk factors for the death of ARDS, and adjusting the medication regimen based on mNGS results was a protective factor. The detection of mNGS can significantly shorten the ICU stay of immunosuppressed patients (P < 0.01), shorten the ventilation time (P < 0.01), and reduce the ICU hospitalization cost (P < 0.05). CONCLUSIONS: Metagenome next-generation sequencing is a valuable tool to determine the etiological value of ARDS caused by severe pneumonia to improve diagnostic accuracy and prognosis for this disease. For immunosuppressed patients, mNGS technology can be used in the early stage to provide more diagnostic evidence and guide medications.

6.
Chin Med Sci J ; 22(3): 196-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17966170

RESUMO

OBJECTIVE: To report surgical experience in pseudoaneurysm (PA) repair of arteriovenous fistula (AVF) for renal hemodialysis. METHODS: Twenty patients undergoing PA repair of AVF for renal hemodialysis were treated in Central Hospital Conde S. Januario of Macao. Sixteen patients had PAs of AVF in upper extremities, 4 in lower extremities. All patients were treated with surgical therapy. RESULTS: All operations were finished without death. One patient suffered from acute thrombosis, recovered without any complication through instant thrombectomy. One patient with postoperative incision bleeding recovered after low molecular weight heparin was ceased. And one AVF could not be mature six weeks later, was recovered after ligation of branch vein. And one patient died due to recurrent cerebral infarction. CONCLUSION: Surgical repair is the best choice for PA of AVF for renal hemodialysis.


Assuntos
Falso Aneurisma/cirurgia , Fístula Arteriovenosa/complicações , Diálise Renal , Adulto , Idoso , Idoso de 80 Anos ou mais , Falso Aneurisma/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...