Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kaohsiung J Med Sci ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970443

RESUMO

Recent studies have identified a correlation between chronic viral hepatitis and cognitive impairment, yet the underlying mechanisms remain unclear. This study investigated the influence of TGFB1 genetic polymorphisms on cognitive function in individuals with and without hepatitis infections, hypothesizing that these polymorphisms and the viral hepatitis-induced inflammatory environment interact to affect cognitive abilities. Participants (173 with viral hepatitis and 258 healthy controls) were recruited. Genotyping of TGFB1 SNPs was performed using the C2-58 Axiom Genome-Wide TWB 2.0 Array Plate. Cognitive function was assessed using the MMSE and MoCA tests. Our results showed that healthy individuals carrying the C allele of rs2241715 displayed better performance in sentence writing (p = 0.020) and language tasks (p = 0.022). Notably, viral hepatitis was found to moderate the impact of the rs2241715 genotype on language function (p = 0.002). Similarly, those carrying the T allele of rs10417924 demonstrated superior orientation to time (p = 0.002), with viral hepatitis modifying the influence of the SNP on this particular cognitive function (p = 0.010). Our findings underscore the significant role of TGFß1 in cognitive function and the moderating impact of viral hepatitis on TGFB1 SNP effects. These findings illuminate the potential of TGFB1 as a therapeutic target for cognitive impairment induced by viral hepatitis, thus broadening our understanding of TGFß1 functionality in the pathogenesis of neurodegeneration.

2.
Sci Rep ; 12(1): 10625, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739162

RESUMO

The direct impact of chronic hepatitis B and hepatitis C on neurocognition remains elusive due to the frequent comorbidities, and the domains of the neurocognitive functions affected have rarely been investigated comprehensively. We cross-sectionally assessed the neurocognitive functions of the individuals with chronic hepatitis B, chronic hepatitis C, treated chronic hepatitis C with a sustained virologic response, and their healthy control counterparts. Laboratory examinations were used to investigate the impact of inflammation on neurocognition, exclude the medical conditions that could interfere with neurocognition assessment, and assess liver function and fibrotic severity of the liver of the participants. This study found the detrimental impact of chronic hepatitis B on language and executive functions. In contrast, individuals with chronic hepatitis C showed deficits in executive functions, psychomotor speed, memory, and attention. Successful elimination of hepatitis C resulted in improved liver function, but not neuropsychological test performance. Moreover, erythrocyte sedimentation rate level was found to mediate the deficits in the attention of individuals with chronic hepatitis C. These results demonstrate the neurocognitive deficits and the difference in the profiles of neurocognitive deficits in individuals with chronic hepatitis B and chronic hepatitis C. Our study also provided results suggesting the mediation by systemic inflammation on the attention deficit in individuals with chronic hepatitis C.


Assuntos
Hepatite B Crônica , Hepatite B , Hepatite C Crônica , Função Executiva , Hepacivirus , Hepatite B/complicações , Hepatite B Crônica/complicações , Humanos , Inflamação , Testes Neuropsicológicos
3.
Antioxidants (Basel) ; 10(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809388

RESUMO

Acetaminophen (APAP) overdose induces acute liver damage and even death. The standard therapeutic dose of N-acetyl cysteine (NAC) cannot be applied to every patient, especially those with high-dose APAP poisoning. There is insufficient evidence to prove that increasing NAC dose can treat patients who failed in standard treatment. This study explores the toxicity of NAC overdose in both APAP poisoning and normal mice. Two inbred mouse strains with different sensitivities to propacetamol-induced hepatotoxicity (PIH) were treated with different NAC doses. NAC therapy decreased PIH by reducing lipid oxidation, protein nitration and inflammation, and increasing glutathione (GSH) levels and antioxidative enzyme activities. However, the therapeutic effects of NAC on PIH were dose-dependent from 125 (N125) to 275 mg/kg (N275). Elevated doses of NAC (400 and 800 mg/kg, N400 and N800) caused additional deaths in both propacetamol-treated and normal mice. N800 treatments significantly decreased hepatic GSH levels and induced inflammatory cytokines and hepatic microvesicular steatosis in both propacetamol-treated and normal mice. Furthermore, both N275 and N400 treatments decreased serum triglyceride (TG) and induced hepatic TG, whereas N800 treatment significantly increased interleukin-6, hepatic TG, and total cholesterol levels. In conclusion, NAC overdose induces hepatic and systemic inflammations and interferes with fatty acid metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...