Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 135, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292020

RESUMO

BACKGROUND: Exosomes derived from stem cells have been widely studied for promoting regeneration and reconstruction of multiple tissues as "cell-free" therapies. However, the applications of exosomes have been hindered by limited sources and insufficient therapeutic potency. RESULTS: In this study, a stem cell-mediated gene therapy strategy is developed in which mediator mesenchymal stem cells are genetically engineered by bone morphogenetic protein-2 gene to produce exosomes (MSC-BMP2-Exo) with enhanced bone regeneration potency. This effect is attributed to the synergistic effect of the content derived from MSCs and the up-regulated BMP2 gene expression. The MSC-BMP2-Exo also present homing ability to the injured site. The toxic effect of genetical transfection vehicles is borne by mediator MSCs, while the produced exosomes exhibit excellent biocompatibility. In addition, by plasmid tracking, it is interesting to find a portion of plasmid DNA can be encapsulated by exosomes and delivered to recipient cells. CONCLUSIONS: In this strategy, engineered MSCs function as cellular factories, which effectively produce exosomes with designed and enhanced therapeutic effects. The accelerating effect in bone healing and the good biocompatibility suggest the potential clinical application of this strategy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Regeneração Óssea , Exossomos/metabolismo , Terapia Genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco
2.
PLoS One ; 12(5): e0178624, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562647

RESUMO

The application of autologous endothelial progenitor cell (EPC) transplantation is a promising approach in therapeutic cardiovascular diseases and ischemic diseases. In this study, we compared the immunogenicity of EPCs, adipose tissue (AD)-derived mesenchymal stem cells (MSCs) and umbilical cord (UC)-derived MSCs by flow cytometry and the mixed lymphocyte reaction. The impact of AD-MSCs and UC-MSCs on the immunogenicity of EPCs was analyzed by the mixed lymphocyte reaction and cytokine secretion in vitro and was further tested by allogenic peripheral blood mononuclear cell (PBMC) induced immuno-rejection on a cell/matrigel graft in an SCID mouse model. EPCs and AD-MSCs express higher levels of MHC class I than UC-MSCs. All three kinds of cells are negative for MHC class II. UC-MSCs also express lower levels of IFN-γ receptor mRNA when compared with EPCs and AD-MSCs. EPCs can stimulate higher rates of proliferation of lymphocytes than AD-MSCs and UC-MSCs. Furthermore, AD-MSCs and UC-MSCs can modulate immune response and inhibit lymphocyte proliferation induced by EPCs, mainly through inhibition of the proliferation of CD8+ T cells. Compared with UC-MSCs, AD-MSCs can significantly improve vessel formation and maintain the integrity of neovascular structure in an EPC+MSC/matrigel graft in SCID mice, especially under allo-PBMC induced immuno-rejection. In conclusion, our study shows that AD-MSC is a powerful candidate to minimize immunological rejection and improve vessel formation in EPC transplantation treatment.


Assuntos
Tecido Adiposo/citologia , Sangue Fetal/imunologia , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Proliferação de Células , Humanos , Imunofenotipagem , Masculino , Camundongos , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...