Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134491, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703686

RESUMO

The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.


Assuntos
Ácido Selenioso , Selênio , Microbiologia do Solo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Selênio/química , Oxirredução , Nanopartículas/química , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Bactérias/genética
2.
Biotechnol Bioeng ; 120(5): 1346-1356, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779277

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) can transfer electrons to extracellular insoluble electron acceptors and play important roles in geochemical cycling, biocorrosion, environmental remediation, and bioenergy generation. c-type cytochromes (c-Cyts) are synthesized by DMRB and usually transported to the cell surface to form modularized electron transport conduits through protein assembly, while some of them are released as extracellularly free-moving electron carriers in growth to promote electron transport. However, the type of these released c-Cyts, the timing of their release, and the functions they perform have not been unrevealed yet. In this work, after characterizing the types of c-Cyts released by Geobacter sulfurreducens under a variety of cultivation conditions, we found that these c-Cyts accumulated up to micromolar concentrations in the surrounding medium and conserved their chemical activities. Further studies demonstrated that the presence of c-Cyts accelerated the process of microbial extracellular electron transfer and mediated long-distance electron transfer. In particular, the presence of c-Cyts promoted the microbial respiration and affected the physiological state of the microbial community. In addition, c-Cyts were observed to be adsorbed on the surface of insoluble electron acceptors and modify electron acceptors. These results reveal the overlooked multiple roles of the released c-Cyts in acting as public goods, delivering electrons, modifying electron acceptors, and even regulating bacterial community structure in natural and artificial environments.


Assuntos
Citocromos , Geobacter , Transporte de Elétrons , Citocromos/metabolismo , Membrana Celular/metabolismo , Metais , Oxirredução
3.
Microbiol Spectr ; 10(6): e0279822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318024

RESUMO

Microbial extracellular electron transfer (EET) is essential in many natural and engineering processes. Compared with the versatile EET pathways of Gram-negative bacteria, the EET of Gram-positive bacteria has been studied much less and is mainly limited to the flavin-mediated pathway. Here, we investigate the EET pathway of a Gram-positive filamentous bacterium Lysinibacillus varians GY32. Strain GY32 has a wide electron donor spectrum (including lactate, acetate, formate, and some amino acids) in electrode respiration. Transcriptomic, proteomic, and electrochemical analyses show that the electrode respiration of GY32 mainly depends on electron mediators, and c-type cytochromes may be involved in its respiration. Fluorescent sensor and electrochemical analyses demonstrate that strain GY32 can secrete cysteine and flavins. Cysteine added shortly after inoculation into microbial fuel cells accelerated EET, showing cysteine is a new endogenous electron mediator of Gram-positive bacteria, which provides novel information to understand the EET networks in natural environments. IMPORTANCE Extracellular electron transport (EET) is a key driving force in biogeochemical element cycles and microbial chemical-electrical-optical energy conversion on the Earth. Gram-positive bacteria are ubiquitous and even dominant in EET-enriched environments. However, attention and knowledge of their EET pathways are largely lacking. Gram-positive bacterium Lysinibacillus varians GY32 has extremely long cells (>1 mm) and conductive nanowires, promising a unique and enormous role in the microenvironments where it lives. Its capability to secrete cysteine renders it not only an EET pathway to respire and survive, but also an electrochemical strategy to connect and shape the ambient microbial community at a millimeter scale. Moreover, its incapability of using flavins as an electron mediator suggests that the common electron mediator is species-dependent. Therefore, our results are important to understanding the EET networks in natural and engineering processes.


Assuntos
Cisteína , Elétrons , Transporte de Elétrons , Cisteína/metabolismo , Proteômica , Bactérias Gram-Positivas/metabolismo , Flavinas/metabolismo
4.
J Am Heart Assoc ; 11(1): e021997, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34971315

RESUMO

Background Subclinical atrial fibrillation (SCAF) is often asymptomatic nonetheless harmful. In patients with cardiac implantable electronic devices, we evaluated the combined performance of homocysteine and uric acid (UA) biomarkers to discriminate high-risk patients for SCAF. Methods and Results We enrolled 1224 consecutive patients for evaluation of SCAF in patients with cardiac implantable electronic devices in Dalian, China, between January 2013 and December 2019. Clinical data and blood samples were obtained from patients selected according to the absence or presence of atrial high-rate episodes >6 minutes. Blood samples were obtained, and homocysteine and UA biomarkers were tested in all patients to distinguish their prognostic performance for SCAF. Homocysteine and UA biomarkers were significantly different in SCAF versus no SCAF. On multivariable Cox regression analysis with potential confounders, elevated homocysteine and UA biomarkers were significantly associated with an increased risk of SCAF. A rise of 1 SD in homocysteine (5.7 µmol/L) was associated with an increased risk of SCAF in men and women regardless of their UA levels. Similarly, a 1-SD increase in UA (91 µmol/L) was associated with an increased risk of SCAF among the patients with high levels of homocysteine in men (hazard ratio, 1.81; 95% CI, 1.43-2.30) and women (hazard ratio, 2.11; 95% CI, 1.69-2.62). The addition of homocysteine and UA to the atrial fibrillation risk factors recommended by the 2020 European Society of Cardiology Guidelines significantly improved risk discrimination for SCAF. Conclusions Homocysteine and UA biomarkers were strongly associated with SCAF. The prediction performance of the European Society of Cardiology model for SCAF was increased by the addition of the selected biomarkers. Registration URL: https://www.chictr.org.cn; Unique identifier: Chi-CTR200003837.


Assuntos
Fibrilação Atrial , Marca-Passo Artificial , Fibrilação Atrial/complicações , Feminino , Homocisteína , Humanos , Masculino , Fatores de Risco , Ácido Úrico
5.
Front Endocrinol (Lausanne) ; 12: 619586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815278

RESUMO

Background: Hyperglycemia is associated with an increased risk of developing atrial fibrillation (AF) and atrial flutter (AFL). Sodium-glucose transporter 2 inhibitors (SGLT2i) have been reported to prevent AF/AFL in some studies, but not others. Therefore, a meta-analysis was performed to investigate whether SGLT2i use is associated with lower risks of AF/AFL. Methods: PubMed, Scopus, Web of Science, Cochrane library databases were searched for randomized placebo-controlled trials comparing SGLT2i and placebo. Results: A total of 33 trials involving 66,685 patients were included. The serious adverse events (SAEs) of AF/AFL occurrence were significantly lower in the SGLT2i group than the placebo group (0.96% vs. 1.19%; RR 0.83; 95% CI 0.71-0.96; P = 0.01; I2 25.5%). Similarly, the SAEs of AF occurrence was significantly lower in the SGLT2i group (0.82% vs. 1.06%; RR 0.81; 95% CI 0.69-0.95; P = 0.01; I2 10.2%). The subgroup analysis showed that the reduction in AF/AFL was significant only for dapagliflozin (1.02% vs. 1.49%; RR 0.73; 95% CI 0.59-0.89; P = 0.002; I2 0%), but not for canagliflozin (1.00% vs 1.08%; RR 0.83; 95% CI 0.62-1.12; P = 0.23; I2 0%), empagliflozin (0.88% vs 0.70%; RR 1.20; 95% CI 0.76-1.90; P = 0.43; I2 0%), ertugliflozin (1.01% vs 0.96%; RR 1.08; 95% CI 0.66-1.75; P = 0.76; I2 0%), and sotagliflozin (0.16% vs 0.10%; RR 1.09; 95% CI 0.13-8.86; P = 0.93; I2 0%). Conclusions: SGLT2i use is associated with a 19.33% lower SAEs of AF/AFL compared with the placebo. Dapagliflozin users had the lowest SAEs of AF/AFL incidence. Further studies are needed to determine whether canagliflozin, empagliflozin, ertugliflozin, and sotagliflozin similarly exert protective effects against AF/AFL development.


Assuntos
Fibrilação Atrial/prevenção & controle , Flutter Atrial/prevenção & controle , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
6.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33514518

RESUMO

Shewanella oneidensis is a model strain of the electrochemical active bacteria (EAB) because of its strong capability of extracellular electron transfer (EET) and genetic tractability. In this study, we investigated the effect of carbon sources on EET in S. oneidensis by using reduction of palladium ions (Pd(II)) as a model and found that pyruvate greatly accelerated the Pd(II) reduction compared with lactate by resting cells. Both Mtr pathway and hydrogenases played a role in Pd(II) reduction when pyruvate was used as a carbon source. Furthermore, in comparison with lactate-feeding S. oneidensis, the transcriptional levels of formate dehydrogenases involving in pyruvate catabolism, Mtr pathway, and hydrogenases in pyruvate-feeding S. oneidensis were up-regulated. Mechanistically, the enhancement of electron generation from pyruvate catabolism and electron transfer to Pd(II) explains the pyruvate effect on Pd(II) reduction. Interestingly, a 2-h time window is required for pyruvate to regulate transcription of these genes and profoundly improve Pd(II) reduction capability, suggesting a hierarchical regulation for pyruvate sensing and response in S. oneidensis IMPORTANCE The unique respiration of EET is crucial for the biogeochemical cycling of metal elements and diverse applications of EAB. Although a carbon source is a determinant factor of bacterial metabolism, the research into the regulation of carbon source on EET is rare. In this work, we reported the pyruvate-specific regulation and improvement of EET in S. oneidensis and revealed the underlying mechanism, which suggests potential targets to engineer and improve the EET efficiency of this bacterium. This study sheds light on the regulatory role of carbon sources in anaerobic respiration in EAB, providing a way to regulate EET for diverse applications from a novel perspective.

7.
Heart Rhythm ; 18(3): 426-433, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33127541

RESUMO

BACKGROUND: Acquired long QT syndrome (aLQTS) is often associated with poor clinical outcomes. OBJECTIVE: The purpose of this study was to examine the important predictors of all-cause mortality of aLQTS patients by applying both random survival forest (RSF) and non-negative matrix factorization (NMF) analyses. METHODS: Clinical characteristics and manually measured electrocardiographic (ECG) parameters were initially entered into the RSF model. Subsequently, latent variables identified using NMF were entered into the RSF as additional variables. The primary outcome was all-cause mortality. RESULTS: A total of 327 aLQTS patients were included. The RSF model identified 16 predictive factors with positive variable importance values: cancer, potassium, RR interval, calcium, age, JT interval, diabetes mellitus, QRS duration, QTp interval, chronic kidney disease, QTc interval, hypertension, QT interval, female, JTc interval, and cerebral hemorrhage. Increasing the number of latent features between ECG indices, which incorporated from n = 0 to n = 4 by NMF, maximally improved the prediction ability of the RSF-NMF model (C-statistic 0.77 vs 0.89). CONCLUSION: Cancer and serum potassium and calcium levels can predict all-cause mortality of aLQTS patients, as can ECG indicators including JTc and QRS. The present RSF-NMF model significantly improved mortality prediction.


Assuntos
Algoritmos , Eletrocardiografia , Frequência Cardíaca/fisiologia , Síndrome do QT Longo/mortalidade , Causas de Morte/tendências , China/epidemiologia , Feminino , Seguimentos , Humanos , Síndrome do QT Longo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida/tendências
8.
Front Cardiovasc Med ; 7: 594788, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330657

RESUMO

Objective: Both serum uric acid (SUA) levels and left atrium diameter (LAD) associate with AF. However, the influence of SUA status for the associated risk of AF related to LAD in hypertension patients is currently unknown. Methods: We retrospectively analyzed a hospital-based sample of 9,618 hypertension patients. Standard electrocardiograms were performed on all patients and were interpreted by expert electro-physiologists. Results: Overall 1,028 (10.69%) patients had AF out of 9,618 patients. In men >65 years of age, the prevalence of AF in the1st, 2nd, and 3rd tertiles of SUA among those grouped in the third tertile of LAD were 9, 12.3, and 21.7%, respectively. In the hyperuricemia group, the OR (95% CI) of AF for the highest tertile of LAD in men ≤ 65 years of age was 3.150 (1.756, 5.651; P < 0.001). Similarly, the hyperuricemic men in the 3rd LAD tertile had a higher likelihood of AF than those belonging to the 1st tertile. The ORs and (95% CIs) were 3.150 (1.756, 5.651; P < 0.001) and 5.522 (2.932, 10.400; P ≤ 0.001) for patients ≤ 65 and >65 years of age. An increase in SUA values was significantly associated with an increased likelihood of AF among women at the top tertiles of LAD, with the OR (95% CI) = 4.593 (1.857, 11.358; P = 0.001). Also, men> 65 years of age with large LAD, present at the third tertile of SUA, had a higher likelihood of AF, with the OR (95% CI) = 2.427 (1.039, 5.667; P < 0.05). Conclusion: SUA levels and LAD are associated with AF in patients with hypertension and the risk of AF associated with LAD increases among those with hyperuricemia.

9.
Nanotechnology ; 31(35): 354002, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32403091

RESUMO

A growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis. In this context Rhodopseudomonas palustris TIE-1 is of much interest. These bacteria respond to light by taking electrons from their external environment, including electrodes, to drive CO2-fixation. The PioA cytochrome, that spans the bacterial outer membrane, is essential for this electron transfer and yet little is known about its structure and electron transfer properties. Here we reveal the ten c-type hemes of PioA are redox active across the window +250 to -400 mV versus Standard Hydrogen Electrode and that the hemes with most positive reduction potentials have His/Met and His/H2O ligation. These chemical and redox properties distinguish PioA from the more widely studied family of MtrA outer membrane decaheme cytochromes with ten His/His ligated hemes. We predict a structure for PioA in which the hemes form a chain spanning the longest dimension of the protein, from Heme 1 to Heme 10. Hemes 2, 3 and 7 are identified as those most likely to have His/Met and/or His/H2O ligation. Sequence analysis suggests His/Met ligation of Heme 2 and/or 7 is a defining feature of decaheme PioA homologs from over 30 different bacterial genera. His/Met ligation of Heme 3 appears to be less common and primarily associated with PioA homologs from purple non-sulphur bacteria belonging to the alphaproteobacteria class.


Assuntos
Citocromos/química , Citocromos/metabolismo , Heme/química , Rodopseudomonas/fisiologia , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Técnicas Eletroquímicas , Transporte de Elétrons , Modelos Moleculares , Fotossíntese , Conformação Proteica
10.
Front Pharmacol ; 10: 773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354488

RESUMO

Background: Venous thromboembolism (VTE) is a common complication in patients with cancer. Direct oral anticoagulants (DOACs) have been proved to be effective on anticoagulation therapy in many diseases. However, the efficacy and the safety of DOACs in the secondary prevention of cancer-associated thrombosis (CAT) remain unclear. To assess the value of DOACs in patients with CAT, we performed a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Methods: Medline, Embase, and the Cochrane Library were searched from their earliest date through to June 2018. Two investigators independently assessed eligibility. Data were extracted by one investigator and verified by the second investigator. The efficacy outcome of this study was recurrent VTE, whereas the safety outcome was major and clinically relevant nonmajor bleeding. Relative risks (RRs) and their corresponding 95% confidence interval (CI) were determined. To pool the results, the Mantel-Haenszel fixed-effects or random-effects models were used. Results: A total of nine articles (six randomized controlled trials and three prospective studies) involving 2,697 patients with CAT who were prescribed DOACs (apixaban, edoxaban, rivaroxaban, or dabigatran) and 2,852 patients who were prescribed traditional anticoagulants [vitamin K antagonists (VKAs), low molecular weight heparin (LMWH), dalteparin, or enoxaparin] were compared. VTE recurrence in the DOAC group was significantly lower than that observed in the traditional anticoagulant group (RR: 0.60; 95%CI: 0.49-0.75; I 2: 0%; p < 0.00001). No significant difference in bleeding risk between both groups was found (RR: 0.95; 95%CI: 0.67-1.36; I 2: 75%; p = 0.79). Conclusions: Our findings showed that anticoagulant therapy with DOACs may be more effective than traditional anticoagulants to prevent recurrent VTE in patients with CAT, while the safety of DOACs may be equal to that of traditional anticoagulants. These findings support the use of DOACs as the first-line therapy for secondary prevention of CAT in most cancer patients.

11.
ACS Nano ; 13(5): 5841-5851, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30969107

RESUMO

Biosynthesis offers opportunities for cost-effective and sustainable production of semiconductor quantum dots (QDs), but is currently restricted by poor controllability on the synthesis process, resulting from limited knowledge on the assembly mechanisms and the lack of effective control strategies. In this work, we provide molecular-level insights into the formation mechanism of biogenic QDs (Bio-QDs) and its connection with the cellular substrate metabolism in Escherichia coli. Strengthening the substrate metabolism for producing more reducing power was found to stimulate the production of several reduced thiol-containing proteins (including glutaredoxin and thioredoxin) that play key roles in Bio-QDs assembly. This effectively diverted the transformation route of the selenium (Se) and cadmium (Cd) metabolic from Cd3(PO4)2 formation to CdS xSe1- x QDs assembly, yielding fine-sized (2.0 ± 0.4 nm), high-quality Bio-QDs with quantum yield (5.2%) and fluorescence lifetime (99.19 ns) far exceeding the existing counterparts. The underlying mechanisms of Bio-QDs crystallization and development were elucidated by density functional theory calculations and molecular dynamics simulation. The resulting Bio-QDs were successfully used for bioimaging of cancer cells and tumor tissue of mice without extra modification. Our work provides fundamental knowledge on the Bio-QDs assembly mechanisms and proposes an effective, facile regulation strategy, which may inspire advances in controlled synthesis and practical applications of Bio-QDs as well as other bionanomaterials.


Assuntos
Cádmio/química , Imagem Molecular/métodos , Pontos Quânticos/química , Selênio/química , Animais , Cádmio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fluorescência , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Camundongos , Microscopia de Fluorescência/métodos , Pontos Quânticos/metabolismo , Selênio/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Tiorredoxinas/química , Tiorredoxinas/genética
12.
Biotechnol Bioeng ; 116(5): 961-971, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659584

RESUMO

Dissimilatory metal reducer Geobacter sulfurreducens can mediate redox processes through extracellular electron transfer and exhibit potential-dependent electrochemical activity in biofilm. Understanding the microbial acclimation to potential is of critical importance for developing robust electrochemically active biofilms and facilitating their environmental, geochemical, and energy applications. In this study, the metabolism and redox conduction behaviors of G. sulfurreducens biofilms developed at different potentials were explored. We found that electrochemical acclimation occurred at the initial hours of polarizing G. sulfurreducens cells to the potentials. Two mechanisms of acclimation were found, depending on the polarizing potential. In the mature biofilms, a low level of biosynthesis and a high level of catabolism were maintained at +0.2 V versus standard hydrogen electrode (SHE). The opposite results were observed at potentials higher than or equal to +0.4 V versus SHE. The potential also regulated the constitution of the electron transfer network by synthesizing more extracellular cytochrome c such as OmcS at 0.0 and +0.2 V and exhibited a better conductivity. These findings provide reasonable explanations for the mechanism governing the electrochemical respiration and activity in G. sulfurreducens biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Geobacter/fisiologia , Potenciais da Membrana/fisiologia
13.
ACS Appl Mater Interfaces ; 10(41): 35090-35098, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30247017

RESUMO

A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vitamin B2 (VB2) onto a graphene [reduced graphene oxide (rGO)]-modified glassy carbon electrode (VB2/rGO/GC) with Geobacter sulfurreducens as the model microorganisms. The VB2/rGO/GC electrode results in 200% higher electrochemical activity than a bare GC anode. Additionally, in microbial electrolysis cells, the current density of this composite electrode peaks at ∼210 µA cm-2 after 118 h and is maintained for 113 h. An electrochemical analysis coupled with molecular simulations reveals that using VB2 as a linker between the electrochemically active protein of this model strain and the rGO surface accelerates the electron transfer, which further improves the bioelectricity generation and favors the long-term stability of the BES. The VB2 bound with a flexible ribityl group as the organic molecular bridge efficiently mediates energy conversion in microbial metabolism and artificial electronics. This work provides a straightforward and effective route to significantly enhance the bioenergy generation in a BES.


Assuntos
Fontes de Energia Bioelétrica , Citocromos/química , Técnicas Eletroquímicas , Geobacter/metabolismo , Grafite/química , Riboflavina/química
14.
Chemosphere ; 211: 345-351, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077930

RESUMO

Ciprofloxacin (CIP), as an extensively used antibiotic, has been widely detected at a high level in the environment and has raised environmental pollution concerns. Thus, efficient and cost-effective methods for CIP degradation are highly desired. Biologically produced manganese oxides (BioMnOx) offer a promising perspective for CIP degradation because of their catalytic reactivity and cost-effectiveness. However, the release of Mn(II) from BioMnOx prevents the further oxidation of pollutants. As a consequence, continuous CIP degradation by BioMnOx is not feasible. In this work, a manganese redox cycling system driven by Pseudomonas putida MnB-1 was constructed for continuous degradation of CIP. In such a system CIP was oxidized continuously and rapidly by re-oxidizing the formed Mn(II) to regenerate reactive BioMnOx, which also protected the strain from CIP toxicity. CIP was degraded through N-dealkylation passway. No significant loss of BioMnOx reactivity was observed in three-cycle CIP degradation process, suggesting the stability of this system. An overlooked intracellular BioMnOx, which was involved in CIP degradation, was discovered in P. putida MnB-1. Moreover, the important role of Mn(III) in facilitating CIP removal in this system was also identified. This work provides useful information to better understand the degradation of antibiotic compounds mediated by microbes in environments.


Assuntos
Antibacterianos/metabolismo , Ciprofloxacina/metabolismo , Manganês/química , Manganês/metabolismo , Pseudomonas putida/metabolismo , Oxirredução
15.
Chembiochem ; 19(20): 2206-2215, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30019519

RESUMO

Multiheme cytochromes possess closely packed redox-active hemes arranged as chains spanning the tertiary structure. Here we describe five variants of a representative multiheme cytochrome engineered as biohybrid phototransducers for converting light into electricity. Each variant possesses a single Cys sulfhydryl group near a terminus of the heme chain, and this was efficiently labelled with a RuII (2,2'-bipyridine)3 photosensitiser. When irradiated in the presence of a sacrificial electron donor (SED) the proteins exhibited different types of behaviour. Certain proteins were rapidly and fully reduced. Other proteins were rapidly semi-reduced but resisted complete photoreduction. These findings reveal that photosensitised multiheme cytochromes can be engineered to act as resistors, with intrinsic regulation of light-driven electron accumulation, and also as molecular wires with essentially unhindered photoreduction. It is proposed that the observed behaviour arises from interplay between the site of electron injection and the distribution of heme reduction potentials along the heme chain.


Assuntos
Grupo dos Citocromos c/química , Transporte de Elétrons , Heme/química , Transdução de Sinal Luminoso , Shewanella/metabolismo , Grupo dos Citocromos c/genética , Elétrons , Cinética , Fármacos Fotossensibilizantes , Shewanella/genética
16.
Biosens Bioelectron ; 99: 416-423, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28810232

RESUMO

Shewanella oneidensis, a model organism for electrochemical activity bacteria, has been widely studied at the biofilm level. However, to obtain more information regarding this species, it is essential to develop an approach to trap and detect S. oneidensis at the cell level. In this study, we report a rapid and label-free microfluidic platform for trapping, counting and detecting S. oneidensis cells. A microfluidic chip was integrated with a modified dielectrophoresis (DEP) trapping technique and hole arrays of different hole sizes. By numerical simulation and an elaborate electric field distribution design, S. oneidensis cells were successfully trapped and positioned in the hole arrays. Real time fluorescence imaging was also used to observe the trapping process. With the aid of a homemade image program, the trapped bacteria were accurately counted, and the results demonstrated that the amount of bacteria correlated with the hole sizes. As one of the significant applications of the device, Raman identification and detection of countable S. oneidensis cells was accomplished in two kinds of holes. The microfluidic platform provides a quantitative sample preparation and analysis method at the cell level that could be widely applied in the environmental and energy fields.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Shewanella/isolamento & purificação , Biofilmes , Eletricidade , Eletroforese , Shewanella/patogenicidade
17.
Front Physiol ; 9: 1861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30705634

RESUMO

Purpose: Circumferential pulmonary vein isolation (CPVI) is a routine ablation strategy of atrial fibrillation (AF). The adenosine test can be used to unmask dormant conduction (DC) of pulmonary veins after CPVI, thereby demonstrating possible pulmonary vein re-connection and the need for further ablation. However, whether adenosine test could help improve the long term successful rate of CPVI is still controversial. This systemic review and meta-analysis was to determine the clinical utility of the adenosine test. Methods: PubMed, EMBASE, Web of Science and Cochrane Library database were searched through July 2016 to identify relevant studies using the keywords "dormant pulmonary vein conduction," "adenosine test," "circumferential pulmonary vein isolation," and "atrial fibrillation." A random-effects model was used to compare pooled outcomes and tested for heterogeneity. Results: A total of 17 studies including 5,169 participants were included in the final meta-analysis. Two groups of comparisons were classified: (1) Long-term successful rate in those AF patients underwent CPVI with and without adenosine test [Group A (+) and Group A (-)]; (2) Long-term successful rate in those patients who had adenosine test with and without dormant conduction [Group DC (+) and Group DC (-)]. The overall meta-analysis showed that no significant difference can be observed between Group A (+) and Group A (-) (RR 1.08; 95% CI 0.97-1.19; P = 0.16; I2 = 66%) and between Group DC (+) and Group DC (-) (RR 1.01; 95% CI 0.91-1.12; P = 0.88; I2 = 60%). Conclusion: Pooled meta-analysis suggested adenosine test may not improve long-term successful rate in AF patients underwent CPVI. Furthermore, AF recurrence may not be decreased by eliminating DC provoked by adenosine, even though adenosine test was applied after CPVI.

18.
Environ Sci Technol ; 51(15): 8616-8623, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671824

RESUMO

Azo dyes are a class of recalcitrant organic pollutants causing severe environmental pollution. For their biodecolorization, the azo reductase system was considered as the major molecular basis in bacteria. However, the intracellular localization of azo reductase limits their function for efficient azo dye decolorization. This limitation may be circumvented by electrochemically active bacteria (EAB) which is capable of extracellular respiration. To verify the essential role of extracellular respiration in azo dye decolorization, Geobacter sulfurreducens PCA, a model EAB, was used for the bioreduction of methyl orange (MO), a typical azo dye. G. sulfurreducens PCA efficiently reduced MO into amines. Kinetic results showed that G. sulfurreducens PCA had the highest decolorization efficiency among the currently known MO reducing bacteria. Electrons from acetate oxidization by this strain were transferred by the respiratory chain to MO. The mass and electron balances, fluorescent probing and proteinase K treatment experimental results indicate that the biodecolorization of MO by G. sulfurreducens PCA is an exclusive extracellular process. OmcB, OmcC and OmcE were identified as the key outer-membrane proteins for the extracellular MO reduction. This work deepens our understanding of EAB physiology and is useful for the decontamination of environments polluted with azo dyes. The contribution of extracellular respiration to pollutants reduction will broaden the environmental applications of EAB.


Assuntos
Compostos Azo/metabolismo , Geobacter , Corantes , Oxirredutases
19.
Environ Sci Technol ; 51(9): 5082-5089, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28414427

RESUMO

Dissimilatory metal reducing bacteria (DMRB) are capable of extracellular electron transfer (EET) to insoluble metal oxides, which are used as external electron acceptors by DMRB for their anaerobic respiration. The EET process has important contribution to environmental remediation mineral cycling, and bioelectrochemical systems. However, the low EET efficiency remains to be one of the major bottlenecks for its practical applications for pollutant degradation. In this work, Shewanella oneidensis MR-1, a model DMRB, was used to examine the feasibility of enhancing the EET and its biodegradation capacity through genetic engineering. A flavin biosynthesis gene cluster ribD-ribC-ribBA-ribE and metal-reducing conduit biosynthesis gene cluster mtrC-mtrA-mtrB were coexpressed in S. oneidensis MR-1. Compared to the control strain, the engineered strain was found to exhibit an improved EET capacity in microbial fuel cells and potentiostat-controlled electrochemical cells, with an increase in maximum current density by approximate 110% and 87%, respectively. The electrochemical impedance spectroscopy (EIS) analysis showed that the current increase correlated with the lower interfacial charge-transfer resistance of the engineered strain. Meanwhile, a three times more rapid removal rate of methyl orange by the engineered strain confirmed the improvement of its EET and biodegradation ability. Our results demonstrate that coupling of improved synthesis of mediators and metal-reducing conduits could be an efficient strategy to enhance EET in S. oneidensis MR-1, which is essential to the applications of DMRB for environmental remediation, wastewater treatment, and bioenergy recovery from wastes.


Assuntos
Elétrons , Shewanella/metabolismo , Transporte de Elétrons , Flavinas , Metais/metabolismo
20.
Biotechnol Bioeng ; 114(4): 761-768, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27869299

RESUMO

Dinitrotoluene (DNT) is a widely present pollutant in aquatic environments, and its biodegradation is an economically attractive way to effectively removal. In aquatic environments, the presence of electrochemically active bacteria (EAB) could contribute to the anaerobic bioreduction of DNT. However, the mechanism behind such a biodegradation process at gene level remains to be further elucidated. In this work, the anaerobic reduction of 2,6-dinitrotoluene (2,6-DNT) by Shewanella oneidensis MR-1, a typical EAB in aquatic environments, was investigated. S. oneidensis MR-1 was found to be able to obtain energy for growth through the anaerobic respiration on 2,6-DNT. Experimental results show that the Mtr respiratory pathway, a transmembrane electron transport chain, was involved in the 2,6-DNT bioreduction. Knockout of cymA or nfnB resulted in a substantial loss of its 2,6-DNT-reducing ability, indicating that both CymA and NfnB were the key proteins in the microbial electron transfer chain. The genetic analysis further confirms that the Mtr respiratory pathway and NfnB are mainly responsible for the anaerobic reduction of 2,6-DNT by S. oneidensis MR-1. This work is useful to better understand the anaerobic bioreduction of nitroaromatic compounds in aquatic environments and remediate the environments contaminated by nitroaromatic compounds. Biotechnol. Bioeng. 2017;114: 761-768. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/metabolismo , Dinitrobenzenos/metabolismo , Nitrorredutases/metabolismo , Shewanella/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Dinitrobenzenos/química , Nitrorredutases/genética , Oxirredução , Riboflavina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...