Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 119(3): 1508-1525, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923649

RESUMO

Legumes have evolved a nitrogen-fixing symbiotic interaction with rhizobia, and this association helps them to cope with the limited nitrogen conditions in soil. The compatible interaction between the host plant and rhizobia leads to the formation of root nodules, wherein internalization and transition of rhizobia into their symbiotic form, termed bacteroids, occur. Rhizobia in the nodules of the Inverted Repeat-Lacking Clade legumes, including Medicago truncatula, undergo terminal differentiation, resulting in elongated and endoreduplicated bacteroids. This transition of endocytosed rhizobia is mediated by a large gene family of host-produced nodule-specific cysteine-rich (NCR) peptides in M. truncatula. Few NCRs have been recently found to be essential for complete differentiation and persistence of bacteroids. Here, we show that a M. truncatula symbiotic mutant FN9285, defective in the complete transition of rhizobia, is deficient in a cluster of NCR genes. More specifically, we show that the loss of the duplicated genes NCR086 and NCR314 in the A17 genotype, found in a single copy in Medicago littoralis R108, is responsible for the ineffective symbiotic phenotype of FN9285. The NCR086 and NCR314 gene pair encodes the same mature peptide but their transcriptional activity varies considerably. Nevertheless, both genes can restore the effective symbiosis in FN9285 indicating that their complementation ability does not depend on the strength of their expression activity. The identification of the NCR086/NCR314 peptide, essential for complete bacteroid differentiation, has extended the list of peptides, from a gene family of several hundred members, that are essential for effective nitrogen-fixing symbiosis in M. truncatula.


Assuntos
Medicago truncatula , Família Multigênica , Proteínas de Plantas , Nódulos Radiculares de Plantas , Simbiose , Medicago truncatula/microbiologia , Medicago truncatula/genética , Medicago truncatula/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Rhizobium/fisiologia , Rhizobium/genética , Fixação de Nitrogênio/genética , Peptídeos/metabolismo , Peptídeos/genética , Sinorhizobium meliloti/fisiologia , Sinorhizobium meliloti/genética , Cisteína/metabolismo
2.
Front Plant Sci ; 14: 1209664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457346

RESUMO

Medicago truncatula has been selected as one of the model legume species for gene functional studies. To elucidate the functions of the very large number of genes present in plant genomes, genetic mutant resources are very useful and necessary tools. Fast Neutron (FN) mutagenesis is effective in inducing deletion mutations in genomes of diverse species. Through this method, we have generated a large mutant resource in M. truncatula. This mutant resources have been used to screen for different mutant using a forward genetics methods. We have isolated and identified a large amount of symbiotic nitrogen fixation (SNF) deficiency mutants. Here, we describe the detail procedures that are being used to characterize symbiotic mutants in M. truncatula. In recent years, whole genome sequencing has been used to speed up and scale up the deletion identification in the mutant. Using this method, we have successfully isolated a SNF defective mutant FN007 and identified that it has a large segment deletion on chromosome 3. The causal deletion in the mutant was confirmed by tail PCR amplication and sequencing. Our results illustrate the utility of whole genome sequencing analysis in the characterization of FN induced deletion mutants for gene discovery and functional studies in the M. truncatula. It is expected to improve our understanding of molecular mechanisms underlying symbiotic nitrogen fixation in legume plants to a great extent.

3.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743118

RESUMO

The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3- signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.


Assuntos
Fabaceae , Rhizobium , Autocontrole , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/genética , Rhizobium/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA