Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38391439

RESUMO

Cellulose-based antibacterial hydrogel has good biocompatibility, antibacterial performance, biodegradability, and other characteristics. It can be very compatible with human tissues and degradation, while its good water absorption and moisturizing properties can effectively absorb wound exudates, keep the wound moist, and promote wound healing. In this paper, the structural properties, and physical and chemical cross-linking preparation methods of cellulose-based antibacterial hydrogels were discussed in detail, and the application of cellulose-based hydrogels in the antibacterial field was deeply studied. In general, cellulose-based antibacterial hydrogels, as a new type of biomaterial, have shown good potential in antimicrobial properties and have been widely used. However, there are still some challenges, such as optimizing the preparation process and performance parameters, improving the antibacterial and physical properties, broadening the application range, and evaluating safety. However, with the deepening of research and technological progress, it is believed that cellulose-based antibacterial hydrogels will be applied and developed in more fields in the future.

2.
Sci Rep ; 12(1): 22207, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564423

RESUMO

The cellulose of carex meyeriana kunth (CMKC) was used as raw material, and the spinning solution was prepared by combining with polyacrylonitrile (PAN). The nano-cellulose fiber of carex meyeriana kunth (CMKN) was prepared by electrospinning. Used to remove methylene blue dye (MB) in aqueous solution. In the electrospinning experiment, the addition of CMKC was in the range of 5% ~ 25%, the feed rate of spinning parameters was set in the range of 0.2 ~ 1.0 mL/h, the distance from the needle tip to the collecting plate was in the range of 10 ~ 25 cm, and the voltage was changed in the range of 15 ~ 25 kV. The obtained CMKN was characterized by scanning electron microscope, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy. The MB removal rate was evaluated in the dye removal experiment, and the effects of CMKN on MB removal rate under the factors of CMKC dosage, temperature, shock time and MB initial concentration were discussed. The optimum process conditions were determined by response surface methodology. The results show that the prepared fibers are superfine fibers with nanometer diameter, and the spun nanofibers have smooth surface, high overall orientation and strong uniformity. The adsorption kinetics of prepared CMKN accords with quasi-second order model, and the adsorption isotherm accords with Langmuir model. The maximum dye removal rate of CMKN is 63.24%.


Assuntos
Carex (Planta) , Nanofibras , Poluentes Químicos da Água , Nanofibras/química , Temperatura , Celulose , Azul de Metileno/química , Adsorção , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
3.
Gels ; 8(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36286147

RESUMO

Acute skin damage caused by burns or cuts occurs frequently in people's daily lives. Such wounds are difficult to heal normally and have persistent inflammation. Wound dressings not only improve the speed of wound healing, but also protect and cover the wound well. Hydrogels have the characteristics of good flexibility, high water content, and good biocompatibility, and are widely used in biomedicine and other fields. Common hydrogels are mainly natural hydrogels and synthetic hydrogels. Hydrogels cross-linked using different raw materials and different methods have different performance characteristics. Natural hydrogels prepared using polysaccharides are simple to obtain and have good biocompatibility, but are inferior to synthetic hydrogels in terms of mechanical properties and stability, and a single polysaccharide hydrogel cannot meet the component requirements for wound healing. Therefore, functional composite hydrogels with high mechanical properties, high biocompatibility, and high antibacterial properties are the current research hotspots. In this review, several common polysaccharides for hydrogel synthesis and the synthesis methods of polysaccharide hydrogels are introduced, and functional composite hydrogel dressings from recent years are classified. It is hoped that this can provide useful references for relevant research in this field.

4.
Chemosphere ; 308(Pt 1): 136306, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36067811

RESUMO

Pyrite-driven autotrophic denitrification (PAD) represents a cheap and promising way for nitrogen removal from organic-limited wastewater, which has obtained increasing attention in recent years. However, the limited denitrification rate and unclear mechanism underlying the process have hindered the engineered application of PAD. This study aims to shed light on the impacts of different pretreatments (i.e., ultrasonication, acid-washing and calcination) on micron-pyrite surface characteristics, denitrification performance and biofilm formation during PAD in batch reactors. A series of solid-phase analyses revealed that all pretreatments could significantly promote biofilm attachment on pyrite granules, but impacted the proportion, distribution and chemical oxidation state of sulfur (S) and iron (Fe) at varying degrees. Batch tests showed that ultrasonication and acid-washing could enhance the total nitrogen reduction rate by 14% and 99%, and decrease the sulfate production rate by 51% and 42%, respectively, when compared with untreated pyrite. Microbial community analysis indicated that Thiobacillus and Rhodanobacter dominated in PAD systems. Two types of indirect mechanisms (i.e., contact and non-contact) for pyrite leaching may co-occur in PAD system, resulting in ferrous iron (Fe2+), thiosulfate (S2O32-) and sulfide (S2-) as the main electron donors for denitrification. A PAD mechanism model was proposed to describe the PAD electron transfer pathway with the aim to optimize the engineered application of PAD for nitrogen removal.


Assuntos
Desnitrificação , Águas Residuárias , Processos Autotróficos , Reatores Biológicos , Ferro , Nitratos , Nitrogênio , Sulfatos , Sulfetos , Enxofre , Tiossulfatos
5.
Polymers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35160369

RESUMO

Degumming is the most important link in the textile industry. The main purpose of degumming is to effectively remove non-cellulose substances in plant bast fibers. In this research, we propose an electro-Fenton (EF) system with a nickel-foam (Ni-F) cathode in weak acid pH (EF/Ni-F) to degum cannabis fiber in EF while reducing the content of pollutants in degumming wastewater. FT-IR, XPS, XRD, SEM, and TG were employed to thoroughly understand the reaction characteristics to characterize chemical components, element qualities, the crystallinity, and the morphologies of degummed fibers. Additionally, physical and mechanical properties such as breaking strength, elongation at breaking, residual glue rate, whiteness, and diameter of degummed fibers were measured. Through testing, it was found that the fiber degummed by the EF method had higher breaking strength, lower residual tackiness, and higher whiteness than other methods. The antibacterial test was used to detect the effect of fiber on Staphylococcus aureus before and after degumming. EF could remove more colloidal components from cannabis than other methods, and the mechanical properties were also enhanced. The characteristics of the degummed fiber further confirmed the effectiveness of the new degumming method. Moreover, the antibacterial experiment found that the antibacterial property of the degummed fiber was enhanced. The colloidal components in the degumming wastewater were flocculated and precipitated. The upper liquid of the solution had low chromaticity, low COD value, and weak acid pH value, which can meet the discharge requirements. The above test proves that EF is an effective degumming method that is environmentally friendly, takes less time, and enhances antibacterial performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...