Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2320835121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38900797

RESUMO

Upper aerodigestive squamous cell carcinoma (UASCC) is a common and aggressive malignancy with few effective therapeutic options. Here, we investigate amino acid metabolism in this cancer, surprisingly noting that UASCC exhibits the highest methionine level across all human cancers, driven by its transporter LAT1. We show that LAT1 is also expressed at the highest level in UASCC, transcriptionally activated by UASCC-specific promoter and enhancers, which are directly coregulated by SCC master regulators TP63/KLF5/SREBF1. Unexpectedly, unbiased bioinformatic screen identifies EZH2 as the most significant target downstream of the LAT1-methionine pathway, directly linking methionine metabolism to epigenomic reprogramming. Importantly, this cascade is indispensable for the survival and proliferation of UASCC patient-derived tumor organoids. In addition, LAT1 expression is closely associated with cellular sensitivity to inhibition of the LAT1-methionine-EZH2 axis. Notably, this unique LAT1-methionine-EZH2 cascade can be targeted effectively by either pharmacological approaches or dietary intervention in vivo. In summary, this work maps a unique mechanistic cross talk between epigenomic reprogramming with methionine metabolism, establishes its biological significance in the biology of UASCC, and identifies a unique tumor-specific vulnerability which can be exploited both pharmacologically and dietarily.


Assuntos
Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , Transportador 1 de Aminoácidos Neutros Grandes , Metionina , Metionina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Linhagem Celular Tumoral , Epigênese Genética , Epigenômica/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Animais , Proliferação de Células , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Reprogramação Celular/genética
2.
J Proteomics ; 304: 105233, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38925350

RESUMO

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. SIGNIFICANCE: Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma in Situ/diagnóstico , Carcinoma in Situ/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/metabolismo , Proteômica/métodos , Idoso
3.
Cancer Lett ; 594: 216994, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801885

RESUMO

Increasing evidence suggests the importance of CD24 in tumor progression, but its role and mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. The present study aims to explore the potential of CD24 as a novel predictive biomarker in ESCC, as well as its mechanism and therapeutic implications in metastasis and 5-FU chemoresistance. By using tissue microarray and immunohistochemistry, we found that CD24 expression was higher in ESCC tumor tissues than paired non-tumor tissues, further indicating that CD24 was markedly associated with poor prognosis. CD24 significantly promoted metastasis and 5-FU chemoresistance in vitro and in vivo. Mechanistically, CD24 competes with GIT2 to bind to Arf6, and stabilizes Arf6-GTP to activate the subsequent ERK pathway, thus promoting cancer progression. In addition, a significant positive correlation between CD24 and p-ERK was observed in clinical ESCC tissues. In summary, this study not only reveals CD24 as a regulatory factor for Arf6 activity, but also uncovers CD24-Arf6-ERK signaling axis as a novel mechanism of ESCC progression. Our findings suggest CD24 as a promising biomarker and therapeutic target in ESCC.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Antígeno CD24 , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Antígeno CD24/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Linhagem Celular Tumoral , Masculino , Feminino , Camundongos , Sistema de Sinalização das MAP Quinases , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Camundongos Nus
4.
J Biol Chem ; 300(7): 107414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810697

RESUMO

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.


Assuntos
Processamento Alternativo , Aminoácido Oxirredutases , Éxons , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Biomolecules ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672404

RESUMO

Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.


Assuntos
Cinesinas , Mitose , Neoplasias , Cinesinas/metabolismo , Cinesinas/genética , Humanos , Mitose/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Regulação Neoplásica da Expressão Gênica , Fuso Acromático/metabolismo , Fuso Acromático/genética
6.
Clin Res Hepatol Gastroenterol ; 48(4): 102318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471582

RESUMO

BACKGROUND: Concurrent chemo-radiotherapy (CCRT) is the preferred non-surgical treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). Unfortunately, some patients respond poorly, which leads to inappropriate or excessive treatment and affects patient survival. To accurately predict the response of ESCC patients to CCRT, we developed classification models based on the clinical, serum proteomic and radiomic data. METHODS: A total of 138 ESCC patients receiving CCRT were enrolled in this study and randomly split into a training cohort (n = 92) and a test cohort (n = 46). All patients were classified into either complete response (CR) or incomplete response (non-CR) groups according to RECIST1.1. Radiomic features were extracted by 3Dslicer. Serum proteomic data was obtained by Olink proximity extension assay. The logistic regression model with elastic-net penalty and the R-package "rms" v6.2-0 were applied to construct classification and nomogram models, respectively. The area under the receiver operating characteristic curves (AUC) was used to evaluate the predictive performance of the models. RESULTS: Seven classification models based on multi-omics data were constructed, of which Model-COR, which integrates five clinical, five serum proteomic, and seven radiomic features, achieved the best predictive performance on the test cohort (AUC = 0.8357, 95 % CI: 0.7158-0.9556). Meanwhile, patients predicted to be CR by Model-COR showed significantly longer overall survival than those predicted to be non-CR in both cohorts (Log-rank P = 0.0014 and 0.027, respectively). Furthermore, two nomogram models based on multi-omics data also performed well in predicting response to CCRT (AUC = 0.8398 and 0.8483, respectively). CONCLUSION: We developed and validated a multi-omics based classification model and two nomogram models for predicting the response of ESCC patients to CCRT, which achieved the best prediction performance by integrating clinical, serum Olink proteomic, and radiomic data. These models could be useful for personalized treatment decisions and more precise clinical radiotherapy and chemotherapy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/terapia , Multiômica , Proteômica , Resposta Patológica Completa , Quimiorradioterapia , Estudos Retrospectivos
7.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
8.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
10.
J Biomol Struct Dyn ; 42(1): 435-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029713

RESUMO

Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.


Assuntos
Actinas , Simulação de Dinâmica Molecular , Actinas/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo
11.
Amino Acids ; 55(11): 1519-1529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814029

RESUMO

Lysyl oxidase-like 4 (LOXL4), a member of lysyl oxidase family, is a copper and lysine tyrosylquinone-dependent amine oxidase that serves the role of catalyzing the cross-linking of elastin and collagen in the extracellular matrix. Numerous studies have shown a significant association between LOXL4 expression levels and tumor proliferation, migration, invasion and patients' prognosis and overall survival in different types of tumors. Here we review their relationship and the molecular pathogenesis behind them, aiming to explore the possibilities of LOXL4 as a prognostic marker for diverse carcinomas and provide some indications for further research in this field.


Assuntos
Carcinoma , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Prognóstico , Colágeno
12.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188966, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657681

RESUMO

Vesicle trafficking is an unceasing and elaborate cellular process that functions in material transport and information delivery. Recent studies have identified the small GTPase, Ras-related protein in brain 11A (RAB11A), as a key regulator in this process. Aberrant RAB11A expression has been reported in several types of cancers, suggesting the important functions and characteristics of RAB11A in cancer. These discoveries are of great significance because therapeutic strategies based on the physiological and pathological status of RAB11A might make cancer treatment more effective, as the molecular mechanisms of cancer development have not been completely revealed. However, these studies on RAB11A have not been reviewed and discussed specifically. Therefore, we summarize and discuss the recent findings of RAB11A involvement in different biological processes, including endocytic recycling regulation, receptors and adhesion molecules recycling, exosome secretion, phagophore formation and cytokinesis, as well as regulatory mechanisms in several tumor types. Moreover, contradictory effects of RAB11A have also been observed in different types of cancers, implying the dual characteristics of RAB11A in cancer, which are either oncogenic or tumor-suppressive. This review on the functions and characteristics of RAB11A highlights the value of RAB11A in inducing multiple important phenotypes based on vesicle trafficking and therefore will offer insights for future studies to reveal the molecular mechanisms, clinical significance, and therapeutic targeting of RAB11A in different cancers.


Assuntos
Proteínas de Transporte , Neoplasias , Humanos , Transporte Biológico , Neoplasias/genética
13.
Mol Oncol ; 17(11): 2451-2471, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37753805

RESUMO

During malignant tumour development, the extracellular matrix (ECM) is usually abnormally regulated. Dysregulated expression of lysyl oxidase-like 2 (LOXL2), matrix metalloproteinase 9 (MMP9) and lipocalin 2 (LCN2) are associated with ECM remodelling. In this study, protein-protein interaction assays indicated that LCN2 and LOXL2 interactions and LCN2 and MMP9 interactions occurred both intracellularly and extracellularly, but interactions between LOXL2 and MMP9 only occurred intracellularly. The LCN2/LOXL2/MMP9 ternary complex promoted migration and invasion of oesophageal squamous cell carcinoma (ESCC) cells, as well as tumour growth and malignant progression in vivo, while the iron chelator deferoxamine mesylate (DFOM) inhibited ESCC tumour growth. Co-overexpression of LCN2, LOXL2 and MMP9 enhanced the ability of tumour cells to degrade fibronectin and Matrigel, increased the formation and extension of filopodia, and promoted the rearrangement of microfilaments through upregulation of profilin 1. In addition, the LCN2/LOXL2/MMP9 ternary complex promoted the expression of testican-1 (SPOCK1), and abnormally activated the FAK/AKT/GSK3ß signalling pathway. In summary, the LCN2/LOXL2/MMP9 ternary complex promoted the migration and invasion of cancer cells and malignant tumour progression through multiple mechanisms and could be a potential therapeutic target.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Lipocalina-2/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Transdução de Sinais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteoglicanas/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
14.
Genome Biol ; 24(1): 193, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620896

RESUMO

BACKGROUND: As one of the most common malignancies, esophageal cancer has two subtypes, squamous cell carcinoma and adenocarcinoma, arising from distinct cells-of-origin. Distinguishing cell-type-specific molecular features from cancer-specific characteristics is challenging. RESULTS: We analyze whole-genome bisulfite sequencing data on 45 esophageal tumor and nonmalignant samples from both subtypes. We develop a novel sequence-aware method to identify large partially methylated domains (PMDs), revealing profound heterogeneity at both methylation level and genomic distribution of PMDs across tumor samples. We identify subtype-specific PMDs that are associated with repressive transcription, chromatin B compartments and high somatic mutation rate. While genomic locations of these PMDs are pre-established in normal cells, the degree of loss is significantly higher in tumors. We find that cell-type-specific deposition of H3K36me2 may underlie genomic distribution of PMDs. At a smaller genomic scale, both cell-type- and cancer-specific differentially methylated regions (DMRs) are identified for each subtype. Using binding motif analysis within these DMRs, we show that a cell-type-specific transcription factor HNF4A maintains the binding sites that it generates in normal cells, while establishing new binding sites cooperatively with novel partners such as FOSL1 in esophageal adenocarcinoma. Finally, leveraging pan-tissue single-cell and pan-cancer epigenomic datasets, we demonstrate that a substantial fraction of cell-type-specific PMDs and DMRs identified here in esophageal cancer are actually markers that co-occur in other cancers originating from related cell types. CONCLUSIONS: These findings advance our understanding of DNA methylation dynamics at various genomic scales in normal and malignant states, providing novel mechanistic insights into cell-type- and cancer-specific epigenetic regulations.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Humanos , Epigênese Genética , Neoplasias Esofágicas/genética , Adenocarcinoma/genética , Carcinoma de Células Escamosas/genética , Cromatina
15.
Dokl Biochem Biophys ; 510(1): 132-143, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37582875

RESUMO

LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.


Assuntos
Glioma , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/metabolismo , Relevância Clínica , Colágeno/metabolismo , Glioma/genética
16.
Oncogene ; 42(30): 2315-2328, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37353616

RESUMO

SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.


Assuntos
Neoplasias Esofágicas , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Complexo de Endopeptidases do Proteassoma/metabolismo , Chaperonas Moleculares/metabolismo , Neoplasias Esofágicas/genética , Estabilidade Proteica , Fatores de Transcrição SOXB1/metabolismo
17.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328063

RESUMO

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Movimento Celular , Neoplasias Esofágicas/metabolismo , Proteômica
18.
Oncogene ; 42(30): 2297-2314, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37349645

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the deadliest forms of human malignancy that currently lacks approved targeted therapeutics. Accumulating evidence suggests that SOX2 overexpression is a key driving factor for ESCC and various squamous cell carcinoma. Here, through screening a small-molecule kinase inhibitor library, we identified GSK3ß as a kinase that is critically required for robust SOX2 expression in ESCC cells. GSK3ß did not promote SOX2 transcriptionally but was required for SOX2 protein stability. We demonstrated that GSK3ß interacts with and phosphorylates SOX2 at residue S251, which blocks SOX2 from ubiquitination and proteasome-dependent degradation instigated by ubiquitin E3 ligase CUL4ADET1-COP1. Pharmacological inhibition or knockdown of GSK3ß by RNA interference selectively impaired SOX2-positive ESCC cell proliferation, cancer stemness, and tumor growth in mouse xenograft model, suggesting that GSK3ß promotes ESCC tumorigenesis primarily by driving SOX2 overexpression. GSK3ß was found to be frequently overexpressed in clinical esophageal tumors, and there was a positive correlation between GSK3ß and SOX2 protein levels. Notably, we found that SOX2 enhanced GSK3ß expression transcriptionally, suggesting the existence of a vicious cycle that drives a coordinated GSK3ß and SOX2 overexpression in ESCC cells. Finally, we demonstrated in tumor xenograft model that GSK3ß inhibitor AR-A014418 was effective in suppressing SOX2-positive ESCC tumor progression and inhibited tumor progression cooperatively with chemotherapeutic agent carboplatin. In conclusion, we uncovered a novel role for GSK3ß in driving SOX2 overexpression and tumorigenesis and provided evidence that targeting GSK3ß may hold promise for the treatment of recalcitrant ESCCs.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Neoplasias Esofágicas/patologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Culina/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
19.
Biomedicines ; 11(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189802

RESUMO

(1) Background: Esophageal cancer (EC) is an important global health challenge. Due to the lack of necessary biomarkers and therapeutic targets, the survival of EC patients is poor. The EC proteomic data of 124 patients recently published by our group provides a database for research in this field. (2) Methods: Bioinformatics analysis was used to identify DNA replication and repair-related proteins in EC. Proximity ligation assay, colony formation assay, DNA fiber assay, and flow cytometry were used to study the effects of related proteins on EC cells. Kaplan-Meier survival analysis was used to evaluate the relationship between gene expression and the survival time of EC patients. (3) Results: Chromatin assembly factor 1 subunit A (CHAF1A) was highly correlated with proliferating cell nuclear antigen (PCNA) expression in EC. CHAF1A and PCNA colocalized in the nucleus of EC cells. Compared with the knockdown of CHAF1A or PCNA alone, the double knockdown of CHAF1A and PCNA could significantly inhibit EC cell proliferation. Mechanistically, CHAF1A and PCNA synergistically accelerated DNA replication and promoted S-phase progression. EC patients with high expression of both CHAF1A and PCNA had a worse survival rate. (4) Conclusion: we identify CHAF1A and PCNA as key cell cycle-related proteins leading to the malignant progression of EC, and these proteins could serve as important prognostic biomarkers and targets for EC.

20.
J Exp Clin Cancer Res ; 42(1): 136, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254126

RESUMO

BACKGROUND: Increasing evidence indicates that the tumor microenvironment (TME) is a crucial determinant of cancer progression. However, the clinical and pathobiological significance of stromal signatures in the TME, as a complex dynamic entity, is still unclear in esophageal squamous cell carcinoma (ESCC). METHODS: Herein, we used single-cell transcriptome sequencing data, imaging mass cytometry (IMC) and multiplex immunofluorescence staining to characterize the stromal signatures in ESCC and evaluate their prognostic values in this aggressive disease. An automated quantitative pathology imaging system determined the locations of the lamina propria, stroma, and invasive front. Subsequently, IMC spatial analyses further uncovered spatial interaction and distribution. Additionally, bioinformatics analysis was performed to explore the TME remodeling mechanism in ESCC. To define a new molecular prognostic model, we calculated the risk score of each patient based on their TME signatures and pTNM stages. RESULTS: We demonstrate that the presence of fibroblasts at the tumor invasive front was associated with the invasive depth and poor prognosis. Furthermore, the amount of α-smooth muscle actin (α-SMA)+ fibroblasts at the tumor invasive front positively correlated with the number of macrophages (MØs), but negatively correlated with that of tumor-infiltrating granzyme B+ immune cells, and CD4+ and CD8+ T cells. Spatial analyses uncovered a significant spatial interaction between α-SMA+ fibroblasts and CD163+ MØs in the TME, which resulted in spatially exclusive interactions to anti-tumor immune cells. We further validated the laminin and collagen signaling network contributions to TME remodeling. Moreover, compared with pTNM staging, a molecular prognostic model, based on expression of α-SMA+ fibroblasts at the invasive front, and CD163+ MØs, showed higher accuracy in predicting survival or recurrence in ESCC patients. Regression analysis confirmed this model is an independent predictor for survival, which also identifies a high-risk group of ESCC patients that can benefit from adjuvant therapy. CONCLUSIONS: Our newly defined biomarker signature may serve as a complement for current clinical risk stratification approaches and provide potential therapeutic targets for reversing the fibroblast-mediated immunosuppressive microenvironment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/patologia , Linfócitos T CD8-Positivos/metabolismo , Prognóstico , Fibroblastos/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...