Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 782621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003012

RESUMO

The bacterial communities of the root-zone soil are capable of regulating vital biogeochemical cycles and the succession of plant growth. Stipa as grassland constructive species is restricted by the difference features of east-west humidity and north-south heat, which shows the population substituting distribution. The distribution, turnover, and potential driving factors and ecological significance of the root-zone bacterial community along broad spatial gradients of Stipa taxa transition remain unclear. This paper investigated seven Stipa species root-zone soils based on high-throughput sequencing combined with the measurements of multiple environmental parameters in arid and semi-arid steppe. The communities of soil bacteria in root zone had considerable turnover, and some regular variations in structure along the Stipa taxa transition are largely determined by climatic factors, vegetation coverage, and pH at a regional scale. Bacterial communities had a clear Stipa population specificity, but they were more strongly affected by the main annual precipitation, which resulted in a biogeographical distribution pattern along precipitation gradient, among which Actinobacteria, Acidobacteria, Proteobacteria, and Chloroflexi were the phyla that were most abundant. During the transformation of Stipa taxa from east to west, the trend of diversity shown by bacterial community in the root zone decreased first, and then increased sharply at S. breviflora, which was followed by continuous decreasing toward northwest afterwards. However, the richness and evenness showed an opposite trend, and α diversity had close association with altitude and pH. There would be specific and different bacterial taxa interactions in different Stipa species, in which S. krylovii had the simplest and most stable interaction network with the strongest resistance to the environment and S. breviflora had most complex and erratic. Moreover, the bacterial community was mainly affected by dispersal limitation at a certain period. These results are conducive to the prediction of sustainable ecosystem services and protection of microbial resources in a semi-arid grassland ecosystem.

2.
Environ Pollut ; 267: 115600, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254629

RESUMO

Volcanic eruptions are important components of natural disturbances that provide a model to explore the effects of volcanic eruption disturbances on soil microorganisms. Despite widespread research, to the best of our knowledge, no studies of volcanic eruption disturbances have investigated the effects on soil microbial communities in the montane meadow steppe. To address this gap, we meticulously investigated the characteristics of the soil microbial communities from the volcano and steppe sites using Illumina MiSeq high-throughput sequencing. Hierarchical clustering analysis and principal coordinate analysis (PCoA) showed that the soil microbial communities from the volcano and steppe sites differed. The diversity and richness of the soil microbial communities from the steppe sites were significantly higher than at the volcano sites (P < 0.05), and the soil microbial communities in the steppe sites had higher stability. The effects of volcanic eruption disturbances on the bacterial community development are greater than its effects on the fungal communities. The environmental filtering of volcanic eruptions selectively retained some special microorganisms (i.e., Conexibacter, Agaricales, and Gaiellales) with strong adaptability to the environmental disturbances, enhanced metabolic activity for sodium and calcium reabsorption, and increased relative abundances of the lichenized saprotrophs. The soil microbial communities from the volcano and steppe sites cooperate to form complex networks of species interactions, which are strongly influenced by the interaction of the soil and vegetation factors. Our findings provide new information on the effects of volcanic eruption disturbances on the soil microbial communities in the montane meadow steppe.


Assuntos
Microbiota , Solo , Pradaria , Microbiologia do Solo , Erupções Vulcânicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...