Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Math Methods Med ; 2019: 7196156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944579

RESUMO

One of the major noise components in electrocardiogram (ECG) is the baseline wander (BW). Effective methods for suppressing BW include the wavelet-based (WT) and the mathematical morphological filtering-based (MMF) algorithms. However, the T waveform distortions introduced by the WT and the rectangular/trapezoidal distortions introduced by MMF degrade the quality of the output signal. Hence, in this study, we introduce a method by combining the MMF and WT to overcome the shortcomings of both existing methods. To demonstrate the effectiveness of the proposed method, artificial ECG signals containing a clinical BW are used for numerical simulation, and we also create a realistic model of baseline wander to compare the proposed method with other state-of-the-art methods commonly used in the literature. The results show that the BW suppression effect of the proposed method is better than that of the others. Also, the new method is capable of preserving the outline of the BW and avoiding waveform distortions caused by the morphology filter, thereby obtaining an enhanced quality of ECG.


Assuntos
Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Artefatos , Simulação por Computador , Humanos , Modelos Teóricos , Movimento (Física) , Razão Sinal-Ruído , Análise de Ondaletas
2.
Health Inf Sci Syst ; 5(1): 17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29270289

RESUMO

We propose a beamforming algorithm based on waveform diversity for hyperthermia treatment of breast cancer using an ultrasonic array. The introduced array has a structure with a network connecting the feeding nodes and the array elements, and the objective of the algorithm is to train the weight matrix of the network to minimize the difference between the generated beam pattern and the ideal one. The training procedure of the algorithm, which is inspired by the idea of machine learning, comprises three parts: forward calculation, comparison, and backward calculation. The forward calculation maps the weight matrix to the beam pattern, and in the comparison step, the generated beam pattern is modified based on the error, and finally, the backward calculation maps the modified beam pattern to a refined weight matrix which performs better than the original one. An optimal weight matrix is obtained by iterative training. The effectiveness of the algorithm is demonstrated by using numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...