Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271119

RESUMO

The escalating costs and high failure rates have decelerated the pace of drug development, which amplifies the research interests in developing combinatorial/repurposed drugs and understanding off-target adverse drug reaction (ADR). In other words, it is demanded to delineate the molecular atlas and pharma-information for the combinatorial/repurposed drugs and off-target interactions. However, such invaluable data were inadequately covered by existing databases. In this study, a major update was thus conducted to the DrugMAP, which accumulated (a) 20831 combinatorial drugs and their interacting atlas involving 1583 pharmacologically important molecules; (b) 842 repurposed drugs and their interacting atlas with 795 molecules; (c) 3260 off-targets relevant to the ADRs of 2731 drugs and (d) various types of pharmaceutical information, including diverse ADMET properties, versatile diseases, and various ADRs/off-targets. With the growing demands for discovering combinatorial/repurposed therapies and the rapidly emerging interest in AI-based drug discovery, DrugMAP was highly expected to act as an indispensable supplement to existing databases facilitating drug discovery, which was accessible at: https://idrblab.org/drugmap/.

2.
Plant Physiol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39133898

RESUMO

The extensive use of nitrogen fertilizer boosts rice (Oryza sativa) production but also harms ecosystems. Therefore, enhancing crop nitrogen use efficiency is crucial. Here, we performed map-based cloning and identified the EARLY FLOWERING3 (ELF3) like protein-encoding gene OsELF3-1, which confers enhanced nitrogen uptake in rice. OsELF3-1 forms a ternary complex (OsEC) with OsELF4s and OsLUX, the putative orthologs of ELF4 and LUX ARRHYTHMO (LUX) in Arabidopsis (Arabidopsis thaliana), respectively. OsEC directly binds to the promoter of Grain number, plant height, and heading date7 (Ghd7) and represses its expression. Ghd7 encodes a transcription factor that has major effects on multiple agronomic traits. Ghd7 is also a transcriptional repressor and directly suppresses the expression of ABC1 REPRESSOR1 (ARE1), a negative regulator of nitrogen use efficiency. Therefore, targeting the OsEC-Ghd7-ARE1 module offers an approach to enhance nitrogen uptake, presenting promising avenues for sustainable agriculture.

3.
J Sci Food Agric ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087308

RESUMO

Nostoc sphaeroides Kützing is a freshwater edible cyanobacterium that is rich in active substances such as polysaccharides, proteins and lipids; it has a variety of pharmacological effects such as antioxidant, anti-inflammatory, antitumor and cholesterol-lowering effects; and is often used as a traditional Chinese medicine with many potential applications in food, cosmetics, medical diagnostics and disease treatment. However, to meet the needs of different fields, such as medicine, there is an urgent need for basic research and technological innovation in culture technology, extraction and preparation of active substances, and the pharmacological mechanism of N. sphaeroides. This paper reviews the pharmacological effects of N. sphaeroides active substances, discusses current culture techniques and methods for extracting active components, and outlines the challenges encountered in cultivating and industrializing N. sphaeroides while discussing future development trends. © 2024 Society of Chemical Industry.

4.
Front Med (Lausanne) ; 11: 1417611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005658

RESUMO

Hemochromatosis, also known as siderosis, is a disease caused by excessive iron deposition in human organs and tissues, resulting from iron metabolism disorders. It is clinically characterized by skin pigmentation (bronze color), liver cirrhosis, diabetes, weakness, and fatigue. Additional symptoms may include arthritis, hypothyroidism, heart failure, and sexual hypofunction. Clinical manifestations can vary from person to person, with a few patients showing no clinical manifestations, which makes the diagnosis difficult for clinicians. In this case report, we described hereditary hemochromatosis related to a mutation in the HAMP gene in Fuyang City, China, as a reference for clinicians. Hereditary hemochromatosis is rarely reported in China. Clinicians in China have relatively insufficient knowledge of this disease, which leads to frequent misdiagnosis. In this case report, we describe hereditary hemochromatosis related to HAMP gene mutation in Fuyang City, China, for the clinician's reference.

5.
New Phytol ; 243(6): 2251-2264, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073105

RESUMO

The shape of rice grains not only determines the thousand-grain weight but also correlates closely with the grain quality. Here we identified an ultra-large grain accession (ULG) with a thousand-grain weight exceeding 60 g. The integrated analysis of QTL, BSA, de novo genome assembled, transcription sequencing, and gene editing was conducted to dissect the molecular basis of the ULG formation. The ULG pyramided advantageous alleles from at least four known grain-shaping genes, OsLG3, OsMADS1, GS3, GL3.1, and one novel locus, qULG2-b, which encoded a leucine-rich repeat receptor-like kinase. The collective impacts of OsLG3, OsMADS1, GS3, and GL3.1 on grain size were confirmed in transgenic plants and near-isogenic lines. The transcriptome analysis identified 112 genes cooperatively regulated by these four genes that were prominently involved in photosynthesis and carbon metabolism. By leveraging the pleiotropy of these genes, we enhanced the grain yield, appearance, and stress tolerance of rice var. SN265. Beyond showcasing the pyramiding of multiple grain size regulation genes that can produce ULG, our study provides a theoretical framework and valuable genomic resources for improving rice variety by leveraging the pleiotropy of grain size regulated genes.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Genes de Plantas , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fenótipo , Alelos , Estresse Fisiológico/genética
6.
Comput Biol Med ; 178: 108687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870722

RESUMO

High-precise modulation of bio-functional proteins related to signaling is crucial in life sciences and human health. The cutting-edge technology of optogenetics, which combines optical method with genetically encoded protein expression, pioneered new pathways for the control of cellular bio-functional proteins (CPs) using optogenetic tools (OTs) in spatial and temporal. Over the past decade, hundreds of optogenetic systems (OSs) have been developed for various applications from living cells to freely moving organisms. However, no database has been constructed to comprehensively provide the valuable information of OSs yet. In this work, a new database named OPTICS (an interactive online platform for photosensory and bio-functional proteins in optogenetic systems) is introduced. Our OPTICS is unique in (i) systematically describing diverse OSs from the perspective of photoreceptor-based classification and mechanism of action, (ii) featuring the detailed biophysical properties and functional data of OSs, (iii) providing the interaction between OT and CP for each OS referring to distinct applications in research, diagnosis, and therapy, and (iv) enabling a light response property-based search against all OSs in the database. Since the information on OSs is essential for rapid and predictable design of optogenetic controls, the comprehensive data provided in OPTICS lay a solid foundation for the future development of novel OSs. OPTICS is freely accessible without login requirement at https://idrblab.org/optics/.


Assuntos
Optogenética , Optogenética/métodos , Humanos , Animais , Bases de Dados de Proteínas
7.
Rice (N Y) ; 17(1): 35, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748282

RESUMO

BACKGROUND: Plant cell walls have evolved precise plasticity in response to environmental stimuli. The plant heterotrimeric G protein complexes could sense and transmit extracellular signals to intracellular signaling systems, and activate a series of downstream responses. dep1 (Dense and Erect Panicles 1), the gain-of-function mutation of DEP1 encoding a G protein γ subunit, confers rice multiple improved agronomic traits. However, the effects of DEP1 on cell wall biosynthesis and wall-related agronomic traits remain largely unknown. RESULTS: In this study, we showed that the DEP1 mutation affects cell wall biosynthesis, leading to improved lodging resistance and biomass saccharification. The DEP1 is ubiquitously expressed with a relatively higher expression level in tissues rich in cell walls. The CRISPR/Cas9 editing mutants of DEP1 (dep1-cs) displayed a significant enhancement in stem mechanical properties relative to the wild-type, leading to a substantial improvement in lodging resistance. Cell wall analyses showed that the DEP1 mutation increased the contents of cellulose, hemicelluloses, and pectin, and reduced lignin content and cellulose crystallinity (CrI). Additionally, the dep1-cs seedlings exhibited higher sensitivity to cellulose biosynthesis inhibitors, 2,6-Dichlorobenzonitrile (DCB) and isoxaben, compared with the wild-type, confirming the role of DEP1 in cellulose deposition. Moreover, the DEP1 mutation-mediated alterations of cell walls lead to increased enzymatic saccharification of biomass after the alkali pretreatment. Furthermore, the comparative transcriptome analysis revealed that the DEP1 mutation substantially altered expression of genes involved in carbohydrate metabolism, and cell wall biosynthesis. CONCLUSIONS: Our findings revealed the roles of DEP1 in cell wall biosynthesis, lodging resistance, and biomass saccharification in rice and suggested genetic modification of DEP1 as a potential strategy to develop energy rice varieties with high lodging resistance.

8.
Eur J Gastroenterol Hepatol ; 36(6): 758-765, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683192

RESUMO

BACKGROUND: Esophageal variceal (EV) hemorrhage is a life-threatening consequence of portal hypertension in hepatitis B virus (HBV) -induced cirrhotic patients. Screening upper endoscopy and endoscopic variceal ligation to find EVs for treatment have complications, contraindications, and high costs. We sought to identify the nomogram models (NMs) as alternative predictions for the risk of EV hemorrhage. METHODS: In this case-control study, we retrospectively analyzed 241 HBV-induced liver cirrhotic patients treated for EVs at the Second People's Hospital of Fuyang City, China from January 2021 to April 2023. We applied univariate analysis and multivariate logistic regression to assess the accuracy of various NMs in EV hemorrhage. The area under the curve (AUC) and calibration curves of the receiver's operating characteristics were used to evaluate the predictive accuracy of the nomogram. Decision curve analysis (DCA) was used to determine the clinically relevant of nomograms. RESULTS: In the prediction group, multivariate logistic regression analysis identified platelet distribution and spleen length as independent risk factors for EVs. We applied NMs as the independent risk factors to predict EVs risk. The NMs fit well with the calibration curve and have good discrimination ability. The AUC and DCA demonstrated that NMs with a good net benefit. The above results were validated in the validation cohort. CONCLUSION: Our non-invasive NMs based on the platelet distribution width and spleen length may be used to predict EV hemorrhage in HBV-induced cirrhotic patients. NMs can help clinicians to increase diagnostic performance leading to improved treatment measures.


Assuntos
Varizes Esofágicas e Gástricas , Hemorragia Gastrointestinal , Cirrose Hepática , Nomogramas , Humanos , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/diagnóstico , Cirrose Hepática/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/diagnóstico , Fatores de Risco , Estudos de Casos e Controles , Adulto , Medição de Risco , Hepatite B/complicações , Curva ROC , Contagem de Plaquetas , Técnicas de Apoio para a Decisão , Valor Preditivo dos Testes , Modelos Logísticos , Baço/diagnóstico por imagem , Baço/patologia , Tamanho do Órgão , China/epidemiologia
9.
Sci Rep ; 14(1): 2999, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316851

RESUMO

Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.


Assuntos
Disruptores Endócrinos , Estrogênios , Humanos , Células MCF-7 , Ecossistema , Estradiol , Estrona , Aprendizado de Máquina
10.
Nucleic Acids Res ; 52(D1): D1490-D1502, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37819041

RESUMO

The phenotypic and regulatory variability of drug transporter (DT) are vital for the understanding of drug responses, drug-drug interactions, multidrug resistances, and so on. The ADME property of a drug is collectively determined by multiple types of variability, such as: microbiota influence (MBI), transcriptional regulation (TSR), epigenetics regulation (EGR), exogenous modulation (EGM) and post-translational modification (PTM). However, no database has yet been available to comprehensively describe these valuable variabilities of DTs. In this study, a major update of VARIDT was therefore conducted, which gave 2072 MBIs, 10 610 TSRs, 46 748 EGRs, 12 209 EGMs and 10 255 PTMs. These variability data were closely related to the transportation of 585 approved and 301 clinical trial drugs for treating 572 diseases. Moreover, the majority of the DTs in this database were found with multiple variabilities, which allowed a collective consideration in determining the ADME properties of a drug. All in all, VARIDT 3.0 is expected to be a popular data repository that could become an essential complement to existing pharmaceutical databases, and is freely accessible without any login requirement at: https://idrblab.org/varidt/.


Assuntos
Bases de Dados de Proteínas , Proteínas de Membrana Transportadoras , Preparações Farmacêuticas , Epigênese Genética , Regulação da Expressão Gênica , Processamento de Proteína Pós-Traducional , Preparações Farmacêuticas/metabolismo
11.
Nucleic Acids Res ; 52(D1): D1355-D1364, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930837

RESUMO

The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.


Assuntos
Bases de Dados de Compostos Químicos , Bases de Dados Factuais , Inativação Metabólica , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38090819

RESUMO

A thorough understanding of cell-line drug response mechanisms is crucial for drug development, repurposing, and resistance reversal. While targeted anticancer therapies have shown promise, not all cancers have well-established biomarkers to stratify drug response. Single-gene associations only explain a small fraction of the observed drug sensitivity, so a more comprehensive method is needed. However, while deep learning models have shown promise in predicting drug response in cell lines, they still face significant challenges when it comes to their application in clinical applications. Therefore, this study proposed a new strategy called DD-Response for cell-line drug response prediction. First, a limitation of narrow modeling horizons was overcome to expand the model training domain by integrating multiple datasets through source-specific label binarization. Second, a modified representation based on a two-dimensional structurized gridding map (SGM) was developed for cell lines & drugs, avoiding feature correlation neglect and potential information loss. Third, a dual-branch, multi-channel convolutional neural network-based model for pairwise response prediction was constructed, enabling accurate outcomes and improved exploration of underlying mechanisms. As a result, the DD-Response demonstrated superior performance, captured cell-line characteristic variations, and provided insights into key factors impacting cell-line drug response. In addition, DD-Response exhibited scalability in predicting clinical patient responses to drug therapy. Overall, because of DD-response's excellent ability to predict drug response and capture key molecules behind them, DD-response is expected to greatly facilitate drug discovery, repurposing, resistance reversal, and therapeutic optimization.

13.
Res Sq ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37886543

RESUMO

Endocrine-disrupting chemicals (EDCs) pose a significant threat to human well-being and the ecosystem. However, in managing the many thousands of uncharacterized chemical entities, the high-throughput screening of EDCs using relevant biological endpoints remains challenging. Three-dimensional (3D) culture technology enables the development of more physiologically relevant systems in more realistic biochemical microenvironments. The high-content and quantitative imaging techniques enable quantifying endpoints associated with cell morphology, cell-cell interaction, and microtissue organization. In the present study, 3D microtissues formed by MCF-7 breast cancer cells were exposed to the model EDCs estradiol (E2) and propyl pyrazole triol (PPT). A 3D imaging and image analysis pipeline was established to extract quantitative image features from estrogen-exposed microtissues. Moreover, a machine-learning classification model was built using estrogenic-associated differential imaging features. Based on 140 common differential image features found between the E2 and PPT group, the classification model predicted E2 and PPT exposure with AUC-ROC at 0.9528 and 0.9513, respectively. Deep learning-assisted analysis software was developed to characterize microtissue gland lumen formation. The fully automated tool can accurately characterize the number of identified lumens and the total luminal volume of each microtissue. Overall, the current study established an integrated approach by combining non-supervised image feature profiling and supervised luminal volume characterization, which reflected the complexity of functional ER signaling and highlighted a promising conceptual framework for estrogenic EDC risk assessment.

14.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834187

RESUMO

Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.


Assuntos
Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Esterificação , Zea mays/metabolismo , Pectinas/metabolismo , Ustilago/metabolismo , Parede Celular/metabolismo
15.
Research (Wash D C) ; 6: 0240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771850

RESUMO

The identification of protein-protein interaction (PPI) sites is essential in the research of protein function and the discovery of new drugs. So far, a variety of computational tools based on machine learning have been developed to accelerate the identification of PPI sites. However, existing methods suffer from the low predictive accuracy or the limited scope of application. Specifically, some methods learned only global or local sequential features, leading to low predictive accuracy, while others achieved improved performance by extracting residue interactions from structures but were limited in their application scope for the serious dependence on precise structure information. There is an urgent need to develop a method that integrates comprehensive information to realize proteome-wide accurate profiling of PPI sites. Herein, a novel ensemble framework for PPI sites prediction, EnsemPPIS, was therefore proposed based on transformer and gated convolutional networks. EnsemPPIS can effectively capture not only global and local patterns but also residue interactions. Specifically, EnsemPPIS was unique in (a) extracting residue interactions from protein sequences with transformer and (b) further integrating global and local sequential features with the ensemble learning strategy. Compared with various existing methods, EnsemPPIS exhibited either superior performance or broader applicability on multiple PPI sites prediction tasks. Moreover, pattern analysis based on the interpretability of EnsemPPIS demonstrated that EnsemPPIS was fully capable of learning residue interactions within the local structure of PPI sites using only sequence information. The web server of EnsemPPIS is freely available at http://idrblab.org/ensemppis.

16.
Plant Physiol ; 193(3): 2180-2196, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37471276

RESUMO

Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Temperatura Baixa , Oxirredução , Homeostase , Regulação da Expressão Gênica de Plantas
17.
J Hazard Mater ; 458: 132020, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429191

RESUMO

Cell wall is essential for plant upright growth, biomass saccharification, and stress resistance. Although cell wall modification is suggested as an effective means to increase biomass saccharification, it is a challenge to maintain normal plant growth with improved mechanical strength and stress resistance. Here, we reported two independent fragile culm mutants, fc19-1 and fc19-2, resulting from novel mutations of OsIRX10, produced by the CRISPR/Cas9 system. Compared to wild-type, the two mutants exhibited reduced contents of xylose, hemicellulose, and cellulose, and increased arabinose and lignin without significant alteration in levels of pectin and uronic acids. Despite brittleness, the mutants displayed increased breaking force, leading to improved lodging resistance. Furthermore, the altered cell wall and increased biomass porosity in fc19 largely increased biomass saccharification. Notably, the mutants showed enhanced cadmium (Cd) resistance with lower Cd accumulation in roots and shoots. The FC19 mutation impacts transcriptional levels of key genes contributing to Cd uptake, sequestration, and translocation. Moreover, transcriptome analysis revealed that the FC19 mutation resulted in alterations of genes mainly involved in carbohydrate and phenylpropanoid metabolism. Therefore, a hypothetic model was proposed to elucidate that the FC19 mutation-mediated cell wall remodeling leads to improvements in lodging resistance, biomass saccharification, and Cd resistance.


Assuntos
Cádmio , Oryza , Cádmio/metabolismo , Oryza/metabolismo , Biomassa , Parede Celular/metabolismo , Mutação
18.
J Mol Biol ; 435(14): 167944, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356911

RESUMO

Spatial proteomics aims for a global description of organelle-specific protein distribution and dynamics, which is essential for understanding the molecular functions and cellular processes in health and disease. However, the application of this technique is seriously restricted by the neglect of robustness among proteomic signatures identified using standard statistical frameworks. Moreover, it is still a major bottleneck to automatically interpretate the identified proteomic signatures due to lack of integration of subcellular information. Herein, an online-tool SISPRO was constructed to (a) identify proteomic signatures with good robustness and accuracy via collectively evaluating relative weighted consistency (CWrel) & area under the curve (AUC) and (b) interpretate the identified signature based on comprehensive subcellular information from 9 organelles and 22 subcellular structures. All in all, SISPRO provides the endeavor to realize the simultaneous improvement of robustness and accuracy in signature identification and the unique capacity in biological annotation lies in its wide coverage of proteins and comprehensive spatial information. SISPRO is expected to be critical in spatial proteomic studies, which can be freely accessed without any login requirement at https://idrblab.org/sispro/.


Assuntos
Organelas , Proteínas , Proteômica , Organelas/metabolismo , Proteínas/metabolismo , Proteômica/métodos
19.
Curr Drug Metab ; 24(3): 162-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37226790

RESUMO

Protein transporters not only have essential functions in regulating the transport of endogenous substrates and remote communication between organs and organisms, but they also play a vital role in drug absorption, distribution, and excretion and are recognized as major determinants of drug safety and efficacy. Understanding transporter function is important for drug development and clarifying disease mechanisms. However, the experimental-based functional research on transporters has been challenged and hinged by the expensive cost of time and resources. With the increasing volume of relevant omics datasets and the rapid evolution of artificial intelligence (AI) techniques, next-generation AI is becoming increasingly prevalent in the functional and pharmaceutical research of transporters. Thus, a comprehensive discussion on the state-of-the-art application of AI in three cutting-edge directions was provided in this review, which included (a) transporter classification and function annotation, (b) structure discovery of membrane transporters, and (c) drug-transporter interaction prediction. This study provides a panoramic view of AI algorithms and tools applied to the field of transporters. It is expected to guide a better understanding and utilization of AI techniques for in-depth studies of transporter-centered functional and pharmaceutical research.


Assuntos
Inteligência Artificial , Pesquisa Farmacêutica , Humanos , Algoritmos , Desenvolvimento de Medicamentos , Proteínas de Membrana Transportadoras
20.
Nat Commun ; 14(1): 1100, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841862

RESUMO

Plant cellulose microfibrils are increasingly employed to produce functional nanofibers and nanocrystals for biomaterials, but their catalytic formation and conversion mechanisms remain elusive. Here, we characterize length-reduced cellulose nanofibers assembly in situ accounting for the high density of amorphous cellulose regions in the natural rice fragile culm 16 (Osfc16) mutant defective in cellulose biosynthesis using both classic and advanced atomic force microscopy (AFM) techniques equipped with a single-molecular recognition system. By employing individual types of cellulases, we observe efficient enzymatic catalysis modes in the mutant, due to amorphous and inner-broken cellulose chains elevated as breakpoints for initiating and completing cellulose hydrolyses into higher-yield fermentable sugars. Furthermore, effective chemical catalysis mode is examined in vitro for cellulose nanofibers conversion into nanocrystals with reduced dimensions. Our study addresses how plant cellulose substrates are digestible and convertible, revealing a strategy for precise engineering of cellulose substrates toward cost-effective biofuels and high-quality bioproducts.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Microscopia de Força Atômica , Açúcares , Parede Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA