Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444731

RESUMO

Traditional food packaging has problems such as nondegradable and poor food safety. Edible films play an important role in food packaging, transportation and storage, having become a focus of research due to their low cost, renewable, degradable, safe and non-toxic characteristics. According to the different materials of edible films substrate, edible films are usually categorized into proteins, polysaccharides and composite edible films. Functional properties of edible films prepared from different substrate materials also vary, single substrate edible films are defective in some aspects. Functional ingredients such as proteins, polysaccharides, essential oils, natural products, nanomaterials, emulsifiers, and so on are commonly added to edible films to improve their functional properties, extend the shelf life of foods, improve the preservation of sensory properties of foods, and make them widely used in the field of food preservation. This paper introduced the classification, characteristics, and modification methods of common edible films, discussed the interactions among the substrate ingredients of composite edible films, the influence of functional ingredients on the properties of edible films, and the effects of modified edible films on the quality of food, aiming to provide new research ideas for the wide application and further study of edible films.

2.
J Phys Chem Lett ; 15(1): 105-112, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38147430

RESUMO

Air stability is a big challenge for inverted perovskite solar cells (IPVSCs). We focus on effect of a cathode interlayer (BCP or TOASiW12) on air degradation of IPVSCs with an Al or Ag cathode. Combined measurements have been carried out to check the changes of the device electrical performance with exposure to air. Our results demonstrated that the IPVSCs with BCP/Al suffered an overall deterioration in terms of dissociation of excitons, transport, and extraction of charge carriers, which was accompanied by improved trap density and serious trap-induced recombination when exposed to air. Instead, all the electrical characteristics of the IPVSCs with TOASiW12/Al, BCP/Ag and TOASiW12/Ag remained stable or slightly reduced after exposed to air over 2 days. This work provides new insight into the air aging of IPVSCs and facilitates the development of CIL materials for cost-effective IPVSCs.

3.
ACS Appl Mater Interfaces ; 15(31): 37433-37441, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489932

RESUMO

We report a low-cost, high theoretical specific capacity π-conjugated organic compound (PTCDA) with C═O active centers as the cathode material in aluminum organic batteries. In addition, in order to improve the electron transport rate of PTCDA, a new method is proposed in this paper, which uses physical vapor deposition (PVD) method to make PTCDA recrystallize and grow on stainless steel and quartz glass substrates to improve its crystallinity. The increase of crystallinity expands the PTCDA π-π-conjugated system, making electrons more delocalized, which is beneficial to the transmission rate of electrons and ions, thereby enhancing the conductivity of the material. The experimental results show that compared with pristine PTCDA, PTCDA(Ss) and PTCDA(G) with higher crystallinity have better cycling stability and rate capability. The DFT (density functional theory) results indicated that the electron-deficient carbonyl group in the PTCDA molecule could reversibly coordinate/dissociate with the positively charged Al complex ions (AlCl2+). This research work provides insights into the rational design of low-dimensional, high-crystallinity, high-performance cathode materials for green aluminum organic batteries.

4.
J Colloid Interface Sci ; 639: 124-132, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804785

RESUMO

Advances in cathode material design and understanding of intercalation mechanisms are necessary to improve the overall performance of aluminum ion batteries. Therefore, we designed ZnSe/SnSe2 hollow microcubes with heterojunction structure as a cathode material for aluminum ion batteries. ZnSe/SnSe2 hollow microcubes with an average size of about1.4 µm were prepared by selenization of ZnSn(OH)6 microcubes successfully. The shell thickness of ZnSe/SnSe2 hollow microcubes is about 250 nm. On one hand, the hollow cubic structure can effectively alleviate the volume effect, provide shorter ion diffusion paths, and increase the contact area with the electrolyte. On the other hand, ZnSe/SnSe2 heterojunction structure can establish a built-in electric field to facilitate ion transport. The synergistic effect of the two leads to the improved electrochemical performance of ZnSe/SnSe2 as the cathode of aluminum ion batteries. The material delivered a reversible capacity of 124 mAh/g after 150 cycles at a current density of 100 mA/g. Meanwhile, coulombic efficiency remained above 98% in almost all cycles. In addition, the electrochemical reaction mechanism and kinetic process of Al3+ and ZnSe/SnSe2 were studied.

5.
ACS Appl Mater Interfaces ; 15(6): 7911-7918, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719898

RESUMO

Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.

6.
Phys Chem Chem Phys ; 21(36): 20065-20072, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31482161

RESUMO

Energy level alignments at the PC71BM/PFN/Ag interface in conventional polymer solar cells (c-PSCs) and the ITO/PFN/PC71BM interface in inverted polymer solar cells (i-PSCs) are systematically investigated via ultraviolet photoelectron spectroscopy and by using the integer charge transfer (ICT) model. The findings demonstrate that PFN as a cathode interlayer is able to effectively reduce the electron extraction barriers from 0.72 eV to 0.38 eV for the c-PSCs and from 0.58 eV to 0.36 eV for the i-PSCs, respectively. In the c-PSCs, the final modified electron extraction barrier matches the predicted value (∼0.4 eV) using the ICT model. In the i-PSCs, there exists an intermixing layer of PFN and the active layer above PFN because some PFN is dissolved by the organic solvent in the active layer solution, resulting in a special energy level alignment at the PFN/PC71BM interface. ITO/PFN (2 nm)/PC71BM (20 nm) in the i-PSCs actually forms such an interface as ITO/PFN/PFN:PC71BM with an energy level alignment like Al/LiF/PC71BM/PFN (0.65 nm), which rationalizes a higher short circuit and fill factor in the i-PSCs than c-PSCs. Finally, a general model to simulate the intermixing layer between the organic cathode interlayer and the active layer has been proposed to describe the energy level alignment of the complicated interfaces in the i-PSCs.

7.
ACS Appl Mater Interfaces ; 9(49): 42969-42977, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29164861

RESUMO

Alcohol-soluble isoindigo derivative with thiophene groups and sulfobetaine zwitterions, IIDTh-NSB was applied as a novel modifier of ZnO in inverted polymer solar cells (i-PSCs). When IIDTh-NSB (0.2 mg/mL) was spin-coated on ZnO as an electron transport layer (ETL), power conversion efficiency (PCE) of the PTB7:PC71BM based i-PSCs reached 8.88%, which is a 20% improvement of that of 7.40% for the device with the ZnO-only ETL. If ZnO was doped by IIDTh-NSB of 1.0 wt %, the PCE of 8.50% could be achieved in the i-PSCs. Combined measurements of capacitance-voltage characteristics, carrier mobility, and photocurrent density-effective voltage characteristics revealed that incorporating IIDTh-NSB as the modifier of ZnO by coating or doping enhanced the built-in potential, charge carrier density and mobility, exciton dissociation, and charge carrier extraction in the i-PSCs because of the improved interfacial contact between the photoactive layer and ZnO as shown in water contact angle measurements and atomic force microscopy images. Finally, impedance spectroscopy investigation provided strong lines of evidence that incorporating IIDTh-NSB as the modifier of ZnO led to the great enhancement in short-circuit current density and fill factor. Furthermore, all the devices with IIDTh-NSB as a modifier of ZnO presented better stability than the device with ZnO-only. These findings suggest that IIDTh-NSB is an effective and competitive material for modification of ZnO in the i-PSCs.

8.
ACS Appl Mater Interfaces ; 9(37): 31345-31351, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28876894

RESUMO

Aqueous-processed nanocrystal solar cells have attracted increasing attention due to the advantage of its environmentally friendly nature, which provides a promising approach for large-scale production. The urgent affair is boosting the power conversion efficiency (PCE) for further commercial applications. The low PCE is mainly attributed to the imperfect device structure, which leads to abundant nonradiative recombination at the interfaces. In this work, an environmentally friendly and efficient method is developed to improve the performance of aqueous-processed CdTe nanocrystal solar cells. Polymer/CdTe planar heterojunction solar cells (PHSCs) with optimized band alignment are constructed, which results in reduced interfacial charge recombination, enhanced carrier collection efficiency and built-in field. Finally, a champion PCE of 5.9%, which is a record for aqueous-processed solar cells based on CdTe nanocrystals, is achieved after optimizing the photovoltaic device.

9.
ACS Appl Mater Interfaces ; 8(48): 32823-32832, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934154

RESUMO

A new class of organic cathode interfacial layer (CIL) materials based on isoindigo derivatives (IID) substituted with pyridinium or sulfonate zwitterion groups were designed, synthesized, and applied in polymer solar cells (PSCs) with PTB7:PC71BM (PTB7: polythieno[3,4-b]-thiophene-co-benzodithiophene and PC71BM: [6,6]-phenyl C71-butyric acidmethyl ester) as an active layer. Compared with the control device, PSCs with an IID-based CIL show simultaneous enhancement of open-circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF). Systematic optimizations of the central conjugated core and side flexible alcohol-soluble groups demonstrated that isoindigo-based CIL material with thiophene and sulfonate zwitterion substituent groups can efficiently enhance the PSC performance. The highest power conversion efficiency (PCE) of 9.12%, which is 1.75 times that of the control device without CIL, was achieved for the PSC having an isoindigo-based CIL. For the PSCs with an isoindigo-based CIL, the molecule-dependent performance property studies revealed that the central conjugated core with D-A-D characteristics and the side chains with sulfonate zwitterions groups represents an efficient strategy for constructing high performance CILs. Our study results may open a new avenue toward high performance PSCs.

10.
Adv Mater ; 28(34): 7521-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27305649

RESUMO

An aqueous-solution-processed photoconductive cathode interlayer is developed, in which the photoinduced charge transfer brings multiple advantages such as increased conductivity and electron mobility, as well as reduced work function. Average power conversion efficiency over 10% is achieved even when the thickness of the cathode interlayer and active layer is up to 100 and 300 nm, respectively.

11.
Angew Chem Int Ed Engl ; 55(9): 3049-53, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26822287

RESUMO

Organic optoelectronics are promising technologies for energy conversion. However, the electrode interlayer, a key material between active layers and conducting electrodes that controls the transport of charge carriers in and out of devices, is still a chemical challenge. Herein, we report a class of porous organic polymers with tunable work function as hole- and electron-selective electrode interlayers. The network with organoborane and carbazole units exhibits extremely low work-function-selective electron flow; while upon ionic ligation and electro-oxidation, the network significantly increases the work function and turns into hole conduction. We demonstrate their outstanding functions as anode and cathode interlayers in energy-converting solar cells and light-emitting diodes.

12.
ACS Appl Mater Interfaces ; 8(1): 900-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26670604

RESUMO

In this work, improved solar cells from aqueous CdTe NCs is achieved by replacing evaporated MoOx with spiro-OMeTAD as a hole transfer layer. The increased Voc and Jsc can be attributed to interfacial dipole effect and reduced back recombination loss, respectively. A high PCE of 6.56% for solar cells from aqueous NCs is obtained by optimizing the microstructure further.

13.
Angew Chem Int Ed Engl ; 54(46): 13594-8, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418672

RESUMO

Conjugated microporous polymers are a unique class of polymers that combine extended π-conjugation with inherent porosity. However, these polymers are synthesized through solution-phase reactions to yield insoluble and unprocessable solids, which preclude not only the evaluation of their conducting properties but also the fabrication of thin films for device implementation. Here, we report a strategy for the synthesis of thin films of π-conjugated microporous polymers by designing thiophene-based electropolymerization at the solution-electrode interface. High-quality films are prepared on a large area of various electrodes, the film thickness is controllable, and the films are used for device fabrication. These films are outstanding hole conductors and, upon incorporation of fullerenes into the pores, function as highly efficient photoactive layers for energy conversions. Our film strategy may boost the applications in photocatalysis, energy storage, and optoelectronics.

14.
Nanoscale ; 7(38): 15945-52, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365163

RESUMO

We present a furan-flanked DPP copolymer, poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo [3,4-c]pyrrole-1,4-dione-altthienylenevinylene} (PDVF-8), and highlight the improvement in the power conversion efficiency (PCE) of polymer solar cells (PSCs) based on the PDVF-8 as an electron donor via solvent additive and methanol treatment. When 3 vol% 1,8-diiodooctane (DIO) or 1-chloronaphthalene (CN) were used as a solvent additive to the PDVF-8:PC71BM solution in chloroform (CF), the PCE can increase from 0.79% to 3.73% or 4.26%. Methanol treatment (MT) can further enhance the PCE to 4.03% (DIO) and 4.69% (CN). The effect of the solvent additives (DIO and CN) and MT on the phase separation of the PDVF-8:PC71BM thin film has been investigated in detail using atomic force microscopy, transmission electron microscopy (TEM), TEM-energy dispersive spectroscopy and X-ray photoemission spectroscopy depth profiling.

15.
ACS Appl Mater Interfaces ; 7(13): 7146-52, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25781480

RESUMO

Without using any environmentally hazardous organic solution, we fabricated hybrid solar cells (HSCs) based on the aqueous-solution-processed poly(3-hexylthiophene) (P3HT) dots and CdTe nanocrystals (NCs). As a novel aqueous donor material, the P3HT dots are prepared through a reprecipitation method and present an average diameter of 2.09 nm. When the P3HT dots are mixed with the aqueous CdTe NCs, the dependence of the device performance on the donor-acceptor ratio shows that the optimized ratio is 1:24. Specifically, the dependence of the device performance on the active-layer thermal annealing conditions is investigated. As a result, the optimized annealing temperature is 265 °C, and the incorporation of P3HT dots as donor materials successfully reduced the annealing time from 1 h to 10 min. In addition, the transmission electron microscopy and atomic force microscopy measurements demonstrate that the size of the CdTe NCs increased as the annealing time increased, and the annealing process facilitates the formation of a smoother interpenetrating network in the active layer. Therefore, charge separation and transport in the P3HT dots:CdTe NCs layer are more efficient. Eventually, the P3HT dots:CdTe NCs solar cells achieved 4.32% power conversion efficiency. The polymer dots and CdTe NCs based aqueous-solution-processed HSCs provide an effective way to avoid a long-time thermal annealing process of the P3HT dots:CdTe NCs layer and largely broaden the donor materials for aqueous HSCs.

16.
Biomed Mater Eng ; 24(6): 2041-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25226900

RESUMO

Chitosan oligosaccharides graft polycaprolactone copolymer (PHCSO-g-PCL) has been synthesized via initiating the polymerization of e-caprolactone (CL) monomer through an amino group protection route using phthaloyl chitosan oligosaccharide (PHCSO) as intermediate. The grafting reaction was carried out in Pyridine at 120 °C with the hydroxyl group of the chitosan oligosaccharide (CSO) as initiator and the tin 2-ethylhexanoate (Sn (Oct)2) as catalyst. The PHCSO-g-PCL nanoparticles with and without bovine serum albumin (BSA) drug were prepared through the self-assembled approach in Dimethylformamide (DMF) organic solvents. PHCSO-PCL copolymer was investigated by Fourier transform infrared spectroscopy (FTIR), 1H NMR spectrum and scanning electron microscopy (SEM). The physicochemical properties of the hydrophobized PHCSO-g-PCL nanoparticles were characterized by fluorescence spectroscopy and dynamic light scattering (DLS). The results of DLS showed that the hydrodynamic diameters and particle size distribution with various concentrations of PHCSO-g-PCL nanoparticles were from 69.82 nm to 195.9 nm with a narrow polydispersity factor of 0.212 to 0.172. The results of DLS also showed that the hydrodynamic diameters and particle size distribution of PHCSO-g-PCL (5 mg/ml) nanoparticles without and with BSA drug (0.4 mg/ml) were from 168.44 nm to 200.7 nm. The polydispersity factor was from 0.119 to 0.159.


Assuntos
Quitosana/química , Nanocápsulas/química , Oligossacarídeos/química , Poliésteres/química , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Cristalização/métodos , Difusão , Teste de Materiais , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 6(3): 1601-7, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24450543

RESUMO

9-Arylidene-9H-fluorene containing donor-acceptor (D-A) alternating polymers P1 and P2 were synthsized and used for the fabrication of polymer solar cells (PSCs). High and low molecular weight P1 (HMW-P1 and LMW-P1) and high molecular weight P2 were prepared to study the influence of molecular weight and the position of alkoxy chains on the photovoltaic performance of PSCs. HMW-P1:PC71BM-based PSCs fabricated from 1,2-dichlorobenzene (DCB) solutions showed a power conversion efficiency (PCE) of 6.26%, while LMW-P1:PC71BM-based PSCs showed poor photovoltaic performance with a PCE of only 2.75%. PCE of HMW-P1:PC71BM-based PSCs was further increased to 6.52% with the addition of 1,8-diiodooctane (DIO) as the additive. Meanwhile, PCE of only 2.51% was obtained for P2:PC71BM-based PSCs. The results indicated that the position of alkoxy substituents on the 9-arylidene-9H-fluorene unit and the molecular weight of polymers are very crucial to the photovoltaic performance of PSCs.

18.
Adv Mater ; 25(25): 3443-8, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23696222

RESUMO

Film-like conjugated microporous polymers (CMPs) are fabricated by the novel strategy of carbazole-based electropolymerization. The CMP film storing a mass of counterions acting as an anode interlayer provides a significant power-conversion efficiency of 7.56% in polymer solar cells and 20.7 cd A(-1) in polymer light-emitting diodes, demonstrating its universality and potential as an electrode interlayer in organic electronics.

19.
Macromol Rapid Commun ; 32(18): 1467-71, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21732464

RESUMO

Novel blue phosphor host, PCNCzSi, using 3,6-linked carbazole with δ-π tetraphenylsilane segment as the main chain modified by peripheral cyanohexyl group was designed. The Si-carbazole backbone entitles the polymer with wide bandgap, high E(T) and good hole transporting ability. The introduction of peripheral CN group with high electron affinity enhances the electron injecting property of the polymer revealed by electron-only device and UPS measurement. Highly efficient spin-coated phosphorescent polymer light-emitting device, using PCNCzSi as the host for blue iridium complex, FIrpic, was realized. The maximum luminous efficiency and maximum external quantum efficiency of the device were 15 cd/A and 6.7%, respectively, which are very high values for blue phosphorescent device using polymers as hosts as known.


Assuntos
Medições Luminescentes/instrumentação , Polímeros/química , Luminescência , Estrutura Molecular , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...