Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(16): 16274-16286, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530418

RESUMO

Efficient and durable electrocatalysts with superior activity are needed for the production of green hydrogen with a high yield and low energy consumption. Electrocatalysts based on transition metal oxides hold dominance due to their abundant natural resources, regulable physical properties, and good adaptation to a solution. In numerous oxide catalyst materials, ferroelectrics, possessing semiconducting characteristics and switchable spontaneous polarization, have been considered promising photoelectrodes for solar water splitting. However, few investigations noted their potential as electrocatalysts. In this study, we report an efficient electrocatalytic electrode made of a BiFeO3/nickel foam heterostructure, which displays a smaller overpotential and higher current density than the blank nickel foam electrode. Moreover, when in contact with an alkaline solution, the bond between hydroxyls and the BiFeO3 surface induces a large area of upward self-polarization, lowering the adsorption energy of subsequent adsorbates and facilitating oxygen and hydrogen evolution reaction. Our work demonstrates an infrequent pathway of using functional semiconducting materials for exploiting highly efficient electrocatalytic electrodes.

2.
Bioresour Technol ; 374: 128765, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822555

RESUMO

Microorganisms that facilitate the decomposition of agricultural wastes are of importance during composting processes. Here, we assessed if microbial agents, comprising Clonostachys rosea, Bacillus amylolyticus and Rhodospirillum photometricum can facilitate the decomposition of a compost mix of vegetable waste, chicken manure, sawdust, and biochar. The results showed that inoculating the compost mix with the microbial agents elevated the compost temperature, increased the thermophilic period, and enhanced cellulose degradation. Microbial agent inoculation also changed the diversity and richness of decomposing microbial communities. Among the microbial agents, the mixture of C. rosea and B. amylolyticus performed better than other mixtures. Taken together, the results confirmed that the microbial agents comprising C. rosea can enhance the composting process by ameliorating the physiochemical conditions of agricultural wastes and promoting the diversity and proliferation of beneficial bacteria involved in the decomposition of cellulose.


Assuntos
Compostagem , Microbiota , Solo , Agricultura , Esterco/microbiologia , Celulose
3.
BMC Genomics ; 23(1): 547, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915415

RESUMO

BACKGROUND: OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. RESULTS: A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. CONCLUSION: This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement.


Assuntos
Solanum , Botrytis , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Solanum/metabolismo , Estresse Fisiológico/genética
4.
PLoS One ; 16(10): e0258685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648605

RESUMO

To estimate the prevalence of herbicide-resistant weeds, 87 wheat and barley farms were randomly surveyed in the Canterbury region of New Zealand. Over 600 weed seed samples from up to 10 mother plants per taxon depending on abundance, were collected immediately prior to harvest (two fields per farm). Some samples provided by agronomists were tested on an ad-hoc basis. Over 40,000 seedlings were grown to the 2-4 leaf stage in glasshouse conditions and sprayed with high priority herbicides for grasses from the three modes-of-action acetyl-CoA carboxylase (ACCase)-inhibitors haloxyfop, fenoxaprop, clodinafop, pinoxaden, clethodim, acetolactate synthase (ALS)-inhibitors iodosulfuron, pyroxsulam, nicosulfuron, and the 5-enolpyruvyl shikimate 3-phosphate synthase (EPSPS)-inhibitor glyphosate. The highest manufacturer recommended label rates were applied for the products registered for use in New Zealand, often higher than the discriminatory rates used in studies elsewhere. Published studies of resistance were rare in New Zealand but we found weeds survived herbicide applications on 42 of the 87 (48%) randomly surveyed farms, while susceptible reference populations died. Resistance was found for ALS-inhibitors on 35 farms (40%) and to ACCase-inhibitors on 20 (23%) farms. The number of farms with resistant weeds (denominator is 87 farms) are reported for ACCase-inhibitors, ALS-inhibitors, and glyphosate respectively as: Avena fatua (9%, 1%, 0% of farms), Bromus catharticus (0%, 2%, 0%), Lolium spp. (17%, 28%, 0%), Phalaris minor (1%, 6%, 0%), and Vulpia bromoides (0%, not tested, 0%). Not all farms had the weeds present, five had no obvious weeds prior to harvest. This survey revealed New Zealand's first documented cases of resistance in P. minor (fenoxaprop, clodinafop, iodosulfuron) and B. catharticus (pyroxsulam). Twelve of the 87 randomly sampled farms (14%) had ALS-inhibitor chlorsulfuron-resistant sow thistles, mostly Sonchus asper but also S. oleraceus. Resistance was confirmed in industry-supplied samples of the grasses Digitaria sanguinalis (nicosulfuron, two maize farms), P. minor (iodosulfuron, one farm), and Lolium spp. (cases included glyphosate, haloxyfop, pinoxaden, iodosulfuron, and pyroxsulam, 9 farms). Industry also supplied Stellaria media samples that were resistant to chlorsulfuron and flumetsulam (ALS-inhibitors) sourced from clover and ryegrass fields from the North and South Island.


Assuntos
Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Hordeum/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , 3-Fosfoshikimato 1-Carboxiviniltransferase/antagonistas & inibidores , Acetolactato Sintase/antagonistas & inibidores , Acetil-CoA Carboxilase/antagonistas & inibidores , Fazendas , Nova Zelândia , Proteínas de Plantas/antagonistas & inibidores , Plantas Daninhas/classificação , Plantas Daninhas/enzimologia
5.
PLoS One ; 16(6): e0253934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191837

RESUMO

Soliva sessilis is a troublesome annual weed species in New Zealand turfgrass. This weed has been controlled selectively in New Zealand turfgrass for many years using pyridine herbicides such as clopyralid. However, in some golf courses, the continuous application of pyridine herbicides has resulted in the selection of S. sessilis populations that are resistant to these herbicides. This study focuses on a clopyralid-resistant population of S. sessilis collected from a golf course with a long history of clopyralid applications. The resistant phenotype of S. sessilis was highly resistant to clopyralid (over 225-fold). It was also cross-resistant to dicamba, MCPA and picloram but not mecoprop. The level of resistance to dicamba was high (7-14-fold) but much lower (2-3-fold) for both MCPA and picloram. The phenotype was morphologically distinct from its susceptible counterpart. Individuals of the clopyralid-resistant phenotype had fewer lobes on their leaves and were slightly larger compared to the susceptible phenotype. Resistant individuals also had a larger leaf area and greater root dry weight than the susceptible plants. An evaluation of internal transcribed spacer (ITS) regions confirmed that clopyralid-resistant phenotypes are conspecific with S. sessilis. In summary, the cross-resistance to several auxinic herbicides in this S. sessilis phenotype greatly reduces chemical options for controlling it; thus, other integrated management practices may be needed such as using turfgrass competition to reduce weed germination. However, the morphological differences between resistant and susceptible plants make it easy to see, which will help with its management.


Assuntos
Asteraceae/fisiologia , Resistência a Herbicidas , Ácidos Picolínicos/toxicidade , Asteraceae/efeitos dos fármacos , Asteraceae/crescimento & desenvolvimento , Sequência de Bases , DNA Intergênico/genética , Modelos Logísticos , Conformação de Ácido Nucleico , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...