Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(5): e559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721006

RESUMO

RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.

2.
Cell Metab ; 35(8): 1304-1326, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352864

RESUMO

Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.


Assuntos
Dioxigenases , Neoplasias , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo
3.
Research (Wash D C) ; 6: 0107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040299

RESUMO

Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.

4.
Sci Rep ; 12(1): 10278, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717510

RESUMO

RNA modifications play a major role in tumorigenicity and progression, but the expression and function in glioblastoma (GBM) have not been well described. In this study, we developed a GBM score based on the differentially expressed genes (DEGs) between groups showing RNA modification patterns. We assessed the association between the GBM score and tumor microenvironment (TME) characteristics. Based on the gene expression of these regulators, we identified two clusters with distinct RNA modification patterns. Kaplan-Meier survival curves showed that patients in cluster 1 had worse survival than those in cluster 2. Kaplan-Meier and multivariate Cox regression analyses showed that GBM scores (based on DEGs between RNA modification patterns) are an independent predictive biomarker for patient prognosis. Besides, we found that samples with high scores were significantly associated with epithelial-to-mesenchymal transition and immune checkpoints, while samples with low scores were associated with cell cycle regulation. Importantly, GBM-score markedly positively correlated drug resistance, while negatively correlated with drug sensitive. The responders of anti-PD-1/PD-L1 immunotherapy tend to have a lower GBM score than non-responders. In conclusion, our comprehensive analysis of multiple RNA modifications in GBM revealed that RNA modification regulators were closely correlated with TME.


Assuntos
Glioblastoma , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Prognóstico , RNA , Microambiente Tumoral/genética
5.
Mol Cancer ; 21(1): 108, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513849

RESUMO

CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.


Assuntos
Neoplasias , RNA Circular , Animais , Carcinogênese/genética , Humanos , Mamíferos/genética , Neoplasias/genética , RNA Circular/genética , RNA não Traduzido , Via de Sinalização Wnt
6.
Oxid Med Cell Longev ; 2022: 1148874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154560

RESUMO

Ischemic stroke is a leading cause of disability and mortality worldwide. Thus, it is urgent to explore its pathophysiological mechanisms and find new therapeutic strategies for its successful treatment. The relationship between oxidative stress and ischemic stroke is increasingly appreciated and attracting considerable attention. ROS serves as a source of oxidative stress. It is a byproduct of mitochondrial metabolism but primarily a functional product of NADPH oxidases (NOX) family members. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is most closely related to the formation of ROS during ischemic stroke. Its expression is significantly upregulated after cerebral ischemia, making it a promising target for treating ischemic stroke. Several drugs targeting NOX4, such as SCM-198, Iso, G-Rb1, betulinic acid, and electroacupuncture, have shown efficacy as treatments of ischemic stroke. MTfp-NOX4 POC provides a novel insight for the treatment of stroke. Combinations of these therapies also provide new approaches for the therapy of ischemic stroke. In this review, we summarize the subcellular location, expression, and pathophysiological mechanisms of NOX4 in the occurrence and development of ischemic stroke. We also discuss the therapeutic strategies and related regulatory mechanisms for treating ischemic stroke. We further comment on the shortcomings of current NOX4-targeted therapy studies and the direction for improvement.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Terapia de Alvo Molecular/métodos , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Quimioterapia Combinada/métodos , Eletroacupuntura/métodos , Ácido Gálico/análogos & derivados , Ácido Gálico/uso terapêutico , Humanos , Triterpenos Pentacíclicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Ácido Betulínico
7.
Front Cell Dev Biol ; 9: 711965, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869305

RESUMO

The dysregulation of mRNA translation is common in malignancies and may lead to tumorigenesis and progression. Eukaryotic initiation factor 4A (eIF4A) proteins are essential for translation, exhibit bidirectional RNA helicase function, and act as RNA-dependent ATPases. In this review, we explored the predicted structures of the three eIF4A isoforms (eIF4A1, eIF4A2, and eIF4A3), and discussed possible explanations for which function during different translation stages (initiation, mRNA localization, export, and mRNA splicing). These proteins also frequently served as targets of microRNAs (miRNAs) or long noncoding RNAs (lncRNAs) to mediate epithelial-mesenchymal transition (EMT), which was associated with tumor cell invasion and metastasis. To define the differential expression of eIF4A family members, we applied the Tumor Immune Estimation Resource website. We figured out that the eIF4A family genes were differently expressed in specific cancer types. We also found that the level of the eIF4A family genes were associated with abundant immune cells infiltration and tumor purity. The associations between eIF4A proteins and cancer patient clinicopathological features suggested that eIF4A proteins might serve as biomarkers for early tumor diagnosis, histological classification, and clinical grading/staging, providing new tools for precise and individualized cancer treatment.

8.
Front Cell Dev Biol ; 9: 755776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888308

RESUMO

Metabolic signatures are frequently observed in cancer and are starting to be recognized as important regulators for tumor progression and therapy. Because metabolism genes are involved in tumor initiation and progression, little is known about the metabolic genomic profiles in low-grade glioma (LGG). Here, we applied bioinformatics analysis to determine the metabolic characteristics of patients with LGG from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We also performed the ConsensusClusterPlus, the CIBERSORT algorithm, the Estimate software, the R package "GSVA," and TIDE to comprehensively describe and compare the characteristic difference between three metabolic subtypes. The R package WGCNA helped us to identify co-expression modules with associated metabolic subtypes. We found that LGG patients were classified into three subtypes based on 113 metabolic characteristics. MC1 patients had poor prognoses and MC3 patients obtained longer survival times. The different metabolic subtypes had different metabolic and immune characteristics, and may have different response patterns to immunotherapy. Based on the metabolic subtype, different patterns were exhibited that reflected the characteristics of each subtype. We also identified eight potential genetic markers associated with the characteristic index of metabolic subtypes. In conclusion, a comprehensive understanding of metabolism associated characteristics and classifications may improve clinical outcomes for LGG.

9.
Signal Transduct Target Ther ; 6(1): 400, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34815385

RESUMO

Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.


Assuntos
Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Humanos , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Circular/genética , RNA Neoplásico/genética
10.
Front Cell Neurosci ; 15: 739506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630043

RESUMO

Subarachnoid hemorrhage (SAH) has a high mortality rate and causes long-term disability in many patients, often associated with cognitive impairment. However, the pathogenesis of delayed brain dysfunction after SAH is not fully understood. A growing body of evidence suggests that neuroinflammation and oxidative stress play a negative role in neurofunctional deficits. Red blood cells and hemoglobin, immune cells, proinflammatory cytokines, and peroxidases are directly or indirectly involved in the regulation of neuroinflammation and oxidative stress in the central nervous system after SAH. This review explores the role of various cellular and acellular components in secondary inflammation and oxidative stress after SAH, and aims to provide new ideas for clinical treatment to improve the prognosis of SAH.

11.
Front Oncol ; 11: 633415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367948

RESUMO

The ALYREF protein acts as a crucial epigenetic regulator in several cancers. However, the specific expression levels and functional roles of ALYREF in cancers are largely unknown, including for hepatocellular carcinoma (HCC). In a pan-cancer tissue analysis that included HCC, we assessed the expression of ALYREF compared to normal tissues using The Cancer Genome Atlas database. Associations between ALYREF gene expression and the clinical characteristics of HCC patient samples were assessed using the UALCAN database. Kaplan-Meier plots were performed to assess HCC patient prognosis, and the TIMER database was used to explore associations between ALYREF expression and immune-cell infiltrations. The same methods were used to assess eIF4A3 expression in HCC patient samples. In addition, ALYREF- and elF4A3-related differentially expressed genes (DEGs) were determined using LinkedOmics, associated protein functionalities were predicted for positively associated DEGs, and both the TargetScan and miRDB databases were used to predict potential upstream miRNAs for control of ALYREF and eIF4A3 expression. We found that ALYREF gene expression was dysregulated in several cancers and was significantly elevated in HCC patient tissue samples and HCC cell lines. The overexpression of ALYREF was significantly related to both advanced tumor-node-metastasis stages and poor HCC prognosis. Furthermore, we found that eIF4A3 expression was significantly correlated with ALYREF expression, and that upregulated eIF4A3 was significantly associated with poor HCC patient outcomes. In the protein-protein interaction network, we identified eight hub genes based on the positively associated DEGs in common between ALYREF and eIF4A3, and the high expression levels of these hub genes were positively associated with patient clinical outcomes. In addition, we identified miR-4666a-5p and miR-6124 as potential regulators of ALYREF and eIF4A3 expression. These findings suggest that increased ALYREF expression may function as a novel biomarker for both HCC diagnosis and prognosis predictions.

12.
Cancer Cell Int ; 21(1): 288, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059057

RESUMO

Mitochondrial pyruvate carrier 1 (MPC1) is a key metabolic protein that regulates the transport of pyruvate into the mitochondrial inner membrane. MPC1 deficiency may cause metabolic reprogramming. However, whether and how MPC1 controls mitochondrial oxidative capacity in cancer are still relatively unknown. MPC1 deficiency was recently found to be strongly associated with various diseases and cancer hallmarks. We utilized online databases and uncovered that MPC1 expression is lower in many cancer tissues than in adjacent normal tissues. In addition, MPC1 expression was found to be substantially altered in five cancer types: breast-invasive carcinoma (BRCA), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), and prostate adenocarcinoma (PRAD). However, in KIRC, LUAD, PAAD, and PRAD, high MPC1 expression is closely associated with favourable prognosis. Low MPC1 expression in BRCA is significantly associated with shorter overall survival time. MPC1 expression shows strong positive and negative correlations with immune cell infiltration in thymoma (THYM) and thyroid carcinoma (THCA). Furthermore, we have comprehensively summarized the current literature regarding the metabolic reprogramming effects of MPC1 in various cancers. As shown in the literature, MPC1 expression is significantly decreased in cancer tissue and associated with poor prognosis. We discuss the potential metabolism-altering effects of MPC1 in cancer, including decreased pyruvate transport ability; impaired pyruvate-driven oxidative phosphorylation (OXPHOS); and increased lactate production, glucose consumption, and glycolytic capacity, and the underlying mechanisms. These activities facilitate tumour progression, migration, and invasion. MPC1 is a novel cancer biomarker and potentially powerful therapeutic target for cancer diagnosis and treatment. Further studies aimed at slowing cancer progression are in progress.

13.
J Cell Mol Med ; 25(11): 5269-5282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955666

RESUMO

The blood-brain barrier (BBB) damage is a momentous pathological process of ischaemic stroke. NADPH oxidases 4 (NOX4) boosts BBB damage after ischaemic stroke and its expression can be influenced by microRNAs. This study aimed to probe into whether miR-92b influenced the BBB damage after ischaemic stroke by regulating NOX4 expression. Here, miR-92b expression was lessened in the ischaemic brains of rats and oxygen-glucose deprivation (OGD)-induced brain microvascular endothelial cells (BMECs). In middle cerebral artery occlusion (MCAo) rats, miR-92b overexpression relieved the ameliorated neurological function and protected the BBB integrity. In vitro model, miR-92b overexpression raised the viability and lessened the permeability of OGD-induced BMECs. miR-92b targeted NOX4 and regulated the viability and permeability of OGD-induced BMECs by negatively modulating NOX4 expression. The transcription factor Foxo1 bound to the miR-92b promoter and restrained its expression. Foxo1 expression was induced by OGD-induction and its knockdown abolished the effects of OGD on miR-92b and NOX4 expressions, cell viability and permeability of BMECs. In general, our findings expounded that Foxo1-induced lessening miR-92b boosted BBB damage after ischaemic stroke by raising NOX4 expression.


Assuntos
Barreira Hematoencefálica/patologia , Isquemia Encefálica/fisiopatologia , AVC Isquêmico/fisiopatologia , MicroRNAs/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Apoptose , Barreira Hematoencefálica/metabolismo , Regulação da Expressão Gênica , Masculino , MicroRNAs/genética , NADPH Oxidase 4/genética , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley
14.
Biomed Pharmacother ; 139: 111572, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838502

RESUMO

Long non-coding RNAs (lncRNAs) represent a group of ncRNAs with more than 200 nucleotides. These RNAs can specifically regulate gene expression at both the transcriptional and the post-transcriptional levels, and increasing evidence indicates that they play vital roles in a variety of disease-related cellular processes. The lncRNA GAS8 antisense RNA 1 (GAS8-AS1, also known as C16orf3) is located in the second intron of GAS8 and has been reported to be both abnormally expressed in several diseases and closely correlated with many clinical characteristics. GAS8-AS1 has been shown to affect many biological functions, including cell proliferation, migration, invasiveness, and autophagy using several signaling pathways. In this review, we have summarized current studies on GAS8-AS1 roles in disease and discuss its potential clinical utility. GAS8-AS1 may be a promising biomarker for both diagnoses and prognoses, and a novel target for many disease therapies.


Assuntos
Doença/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores , Diagnóstico , Humanos , Prognóstico
15.
Biomed Pharmacother ; 137: 111429, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761624

RESUMO

Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation. Furthermore, MAGI2-AS3 may serve as both a diagnostic biomarker and as a promising therapeutic target against solid tumors. In this review, we summarize the current knowledge regarding the biological functions and related molecular mechanisms of MAGI2-AS3 in solid-tumor progression. We conclude that understanding MAGI2-AS3 properties may provide new insights into the diagnoses and treatments of solid tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Guanilato Quinases/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores Tumorais/análise , Progressão da Doença , Humanos , Neoplasias/diagnóstico , Prognóstico
16.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374660

RESUMO

Cell death represents a basic biological paradigm that governs outcomes and long-term sequelae in almost every hepatic disease. Necroptosis is a common form of programmed cell death in the liver. Necroptosis can be activated by ligands of death receptors, which then interact with receptor-interactive protein kinases 1 (RIPK1). RIPK1 mediates receptor interacting receptor-interactive protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) and necrosome formation. Regarding the molecular mechanisms of mitochondrial-mediated necroptosis, the RIPK1/RIPK3/MLKL necrosome complex can enhance oxidative respiration and generate reactive oxygen species, which can be a crucial factor in the susceptibility of cells to necroptosis. The necrosome complex is also linked to mitochondrial components such as phosphoglycerate mutase family member 5 (PGAM5), metabolic enzymes in the mitochondrial matrix, mitochondrial permeability protein, and cyclophilin D. In this review, we focus on the role of mitochondria-mediated cell necroptosis in acute liver injury, chronic liver diseases, and hepatocellular carcinoma, and its possible translation into clinical applications.


Assuntos
Suscetibilidade a Doenças , Hepatopatias/etiologia , Hepatopatias/metabolismo , Mitocôndrias/metabolismo , Necroptose , Biomarcadores , Gerenciamento Clínico , Regulação Enzimológica da Expressão Gênica , Humanos , Hepatopatias/patologia , Hepatopatias/terapia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Necroptose/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...