Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 166: 115411, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37651800

RESUMO

Kinesin family member 3 A (KIF3A) decrease have been reported in silicotic patients and rats. However, the detailed mechanisms of KIF3A in silicosis remain unknown. In this study, we demonstrated that KIF3A effectively blocked the expression of ß-catenin and downstream myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling, thus inhibiting silica-induced epithelial-myofibroblast transition (EMyT). Moreover, KIF3A was identified as a downstream mediator of an antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Knockdown of KIF3A expression reactivated ß-catenin/myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling that was attenuated by Ac-SDKP in vitro. Collectively, our findings suggest that Ac-SDKP plays its anti-fibrosis role via KIF3A-mediated ß-catenin suppression, at least in part, in both in vivo model of silicosis and in vitro model of EMyT.


Assuntos
Silicose , beta Catenina , Animais , Ratos , Cinesinas , Miofibroblastos , Fator de Resposta Sérica , Dióxido de Silício/toxicidade , Fatores de Transcrição
2.
Int J Endocrinol ; 2021: 2077633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858497

RESUMO

BACKGROUND: The current guideline for the management of adrenocortical carcinoma (ACC) is insufficient for accurate risk prediction to guide adjuvant therapy. Given frequent and severe therapeutic side effects, a better estimate of survival is warranted for risk-specific assignment to adjuvant treatment. We attempted to construct an integrated model based on a prognostic gene signature and clinicopathological features to improve risk stratification and survival prediction in ACC. METHODS: Using a series of bioinformatic and statistical approaches, a gene-expression signature was established and validated in two independent cohorts. By combining the signature with clinicopathological features, a decision tree was generated to improve risk stratification, and a nomogram was constructed to personalize risk prediction. Time-dependent receiver operating characteristic (tROC) and calibration analysis were performed to evaluate the predictive power and accuracy. RESULTS: A three-gene signature could discriminate high-risk patients well in both training and validation cohorts. Multivariate regression analysis demonstrated the signature to be an independent predictor of overall survival. The decision tree could identify risk subgroups powerfully, and the nomogram showed high accuracy of survival prediction. Particularly, expression of a gene hitherto unknown to be dysregulated in ACC, TIGD1, was shown to be prognostically relevant. CONCLUSION: We propose a novel gene signature to guide decision-making about adjuvant therapy in ACC. The score shows unprecedented survival prediction and hence constitutes a huge step towards personalized management. As a secondary important finding, we report the discovery and validation of a new oncogene, TIGD1, which was consistently overexpressed in ACC. TIGD1 might shed further light on the biology of ACC and might give rise to targeted therapies that not only apply to ACC but potentially also to other malignancies.

3.
J Cell Sci ; 134(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33310909

RESUMO

Silicosis is characterized by silica exposure-induced lung interstitial fibrosis and formation of silicotic nodules, resulting in lung stiffening. The acetylation of microtubules mediated by α-tubulin N-acetyltransferase 1 (α-TAT1) is a posttranslational modification that promotes microtubule stability in response to mechanical stimulation. α-TAT1 and downstream acetylated α-tubulin (Ac-α-Tub) are decreased in silicosis, promoting the epithelial-mesenchymal transition (EMT); however, the underlying mechanisms are unknown. We found that silica, matrix stiffening or their combination triggered Ac-α-Tub downregulation in alveolar epithelial cells, followed by DNA damage and replication stress. α-TAT1 elevated Ac-α-Tub to limit replication stress and the EMT via trafficking of p53-binding protein 1 (53BP1, also known as TP53BP1). The results provide evidence that α-TAT1 and Ac-α-Tub inhibit the EMT and silicosis fibrosis by preventing 53BP1 mislocalization and relieving DNA damage. This study provides insight into how the cell cycle is regulated during the EMT and why the decrease in α-TAT1 and Ac-α-Tub promotes silicosis fibrosis.This article has an associated First Person interview with the first authors of the paper.


Assuntos
Transição Epitelial-Mesenquimal , Tubulina (Proteína) , Acetilação , Dano ao DNA , Transição Epitelial-Mesenquimal/genética , Processamento de Proteína Pós-Traducional , Dióxido de Silício/toxicidade , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
4.
Theranostics ; 10(4): 1719-1732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042332

RESUMO

The purpose of this study was to determine the effects of Kinesin family member 3A (KIF3A) on primary cilia and myofibroblast differentiation during silicosis by regulating Sonic hedgehog (SHH) signalling. Methods: Changes in primary cilia during silicosis and myofibroblast differentiation were detected in silicotic patients, experimental silicotic rats, and a myofibroblast differentiation model induced by SiO2. We also explored the mechanisms underlying KIF3A regulation of Glioma-associated oncogene homologs (GLIs) involved in myofibroblast differentiation. Results: Primary cilia (marked by ARL13B and Ac-α-Tub) and ciliary-related proteins (IFT 88 and KIF3A) were increased initially and then decreased as silicosis progressed. Loss and shedding of primary cilia were also found during silicosis. Treatment of MRC-5 fibroblasts with silica and then transfection of KIF3A-siRNA blocked activation of SHH signalling, but increased GLI2FL as a transcriptional activator of SRF, and reduced the inhibitory effect of GLI3R on ACTA2. Conclusion: Our findings indicate that primary cilia are markedly altered during silicosis and the loss of KIF3A may promote myofibroblast differentiation induced by SiO2.


Assuntos
Cílios/metabolismo , Cinesinas/farmacologia , Dióxido de Silício/farmacologia , Silicose/patologia , Proteína Gli3 com Dedos de Zinco/farmacologia , Actinas , Animais , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas Hedgehog/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Masculino , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Dióxido de Silício/efeitos adversos , Silicose/metabolismo , Fatores de Transcrição/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...