Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 588: 501-509, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33434877

RESUMO

HYPOTHESIS: The viscosity of water-in-oil Pickering emulsions may dramatically increase upon cooling. The solvation of the long-chain alkyl groups grafted on the particles stabilizer is the likely cause of the strong dependence of rheological property on temperature. Thus, we hypothesize that silica nanoparticles (NPs) grafted with short-chain alkyl groups can stabilize Pickering emulsions, yielding weakly temperature-dependent rheological property. EXPERIMENTS: Using alkyl-grafted (methyl, octyl, and octadecyl) silica NPs as emulsifiers, the rheological properties and microstructure of the water-in-oil Pickering, as well as the solvation of the silica NPs, were studied using diffusing-wave spectroscopy microrheology measurements, confocal laser scanning microscopy, and low-field nuclear magnetic resonance measurements. FINDINGS: The use of methyl- and octadecyl-grafted silica NPs, which have almost identical optimum contact angles, to stabilize emulsions dramatically reduced the effect of cooling on the viscosity. Moreover, the emulsions stabilized by these methyl-grafted silica NPs exhibited nearly constant rheological properties as the temperature decreased from 75 to 5 °C. The nearly constant rheological properties are attributed to the nearly constant solvation in this temperature range. These materials have potential applications in the cosmetics and petroleum industries.

2.
Langmuir ; 36(33): 9800-9809, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32787117

RESUMO

Because of their distinctive mode of action in targeting bacterial cell membranes, antimicrobial peptides (AMPs) are increasingly regarded as a potential candidate for the development of novel antibiotics to combat the wide spread of bacterial resistance. To date, understanding of the exact molecular process by which AMPs act on the real bacterial envelope remains challenging. Simultaneously, the aggregated state of AMPs upon interaction with bacterial envelopes is still elusive. Previously, we have demonstrated that the potent antibacterial activity of a designed surfactant-like peptide Ac-A9K-NH2 benefited greatly from its high self-assembling ability and appropriate self-assembled morphologies and sizes. By using high-resolution atomic force microscopy, we here not only follow the variations of the Escherichia coli cell envelope in the presence of Ac-A9K-NH2 but also characterize the peptide aggregates on the bacterial surface as well as on the substrate surface. The results, together with those from fluorescence, zeta potential, circular dichroism, and scanning electron microscopy measurements, indicate that both the positively charged peptide monomers and self-assembled nanostructures can directly act on the negatively charged bacterial surface, followed by their insertion into the bacterial membrane, the formation of surface nanopores, and membrane lysis. The mechanism of Ac-A9K-NH2 against E. coli is thus consistent with the detergent-like mode of action. This work enhances our mechanistic understanding of the antibacterial behaviors of self-assembling peptides that will be valuable in exploring their biomedical applications.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Escherichia coli , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular , Dicroísmo Circular
3.
ACS Omega ; 5(7): 3453-3461, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118159

RESUMO

Drilling fluids with poor filtration property are disadvantageous for well drilling, easily causing wellbore instability and formation collapse. This work reports the novel utilization of tea polyphenols (TPs) as a fluid loss additive in the bentonite-water-based drilling fluids (BT-WDFs). The influence of TP concentration and temperature on the filtration property of the fluids was described. The results showed that an increase in the TP concentration contributed to a decrease in fluid loss. Especially BT-WDFs added with 3.0 wt % TP exhibited a low fluid loss (less than or approximately 10 mL) at room temperature and high temperatures (∼150 °C), displaying better filtration property and temperature resistance than common fluid loss agents. Through the investigations on the viscosity, the particle size of TP/BT-WDFs, and micromorphology of filter cakes, the dispersion effect of TP was considered as the dominant factor for the filtration property of TP/BT-WDFs. TP molecules, containing many functional groups, could attach to the surface of bentonite platelets, improve the hydration of bentonite particles, and promote the dispersion of bentonite particles. At room temperature, TP facilitated the dispersion of hydrated bentonite. The existing "house-of-cards" structure was weakened, decreasing the particle size and viscosity of TP/BT-WDFs. At high temperature, bentonite dehydrated and aggregated, thereby increasing the particle size of bentonite particles, decreasing the viscosity of bentonite dispersion, and resulting in a high fluid loss. The addition of TP dispersed bentonite from face-to-face (FF) attraction to edge-to-face (EF) attraction, recovered the house-of-cards structure, and increased the viscosity of TP/BT-WDFs. Under the dispersion effect of TP, an appropriate grain composition of bentonite particles was formed and the pore throats were plugged to prevent the penetration of water. Finally, a compact and thin filter cake was built and the fluid loss was greatly reduced. The TP/BT-WDFs exhibited good filtration property. TP is a prospective candidate to be a high-performance and biodegradable fluid loss additive in well-drilling applications.

4.
J Colloid Interface Sci ; 555: 53-63, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376768

RESUMO

HYPOTHESIS: High temperatures can reduce the colloidal stability and rheological properties of nonpolar organoclay suspensions. The desorption of surfactants from organoclay has been proposed to explain this effect, but the mechanism remains unclear. In this work, it was hypothesized that the high-temperature-induced desorption of ion-exchanged surfactants is the main factor affecting the stabilization of suspensions. EXPERIMENTS: Using the cationic surfactant dimethyldioctadecylammonium chloride (DODMAC) and Na-montmorillonite (Na-MMT), the high-temperature-induced reestablishment of the adsorption-desorption equilibrium of DODMAC in organoclay suspensions was studied. Thermogravimetric analysis combined with infrared spectroscopy and gas chromatography/mass spectrometry experiments were performed to determine the thermal decomposition products and, ultimately, infer the adsorption modes and locations of DODMAC on Na-MMT. Thermal analysis and rheology were utilized to demonstrate the high-temperature-induced desorption and transfer of DODMAC in organoclay suspensions. FINDINGS: High temperatures induced the complete desorption of physically adsorbed DODMAC molecules from particle surfaces, the partial desorption of ion-exchanged dimethyldioctadecylammonium ions (DODMA+ ions) from particle surfaces, and the partial transfer of ion-exchanged DODMA+ ions from the surfaces to the interlayers. Importantly, desorption of ion-exchanged DODMA+ ions resulted in destabilization of the organoclay suspensions at high temperatures.

5.
RSC Adv ; 9(5): 2402-2411, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35520504

RESUMO

Crude oil contaminated soil has been widely recognized to constitute a major environmental issue due its adverse effects on human health and ecological safety. The main objective of this study is to explore the possibility of using an ex situ solvent/surfactant washing technique for the remediation of crude oil-contaminated soil. Three organic solvents (methanol, acetone, and toluene) and one surfactant (AES-D-OA) were employed to form three kinds of solvent/surfactant systems, and utilized to evaluate the desorption performance of crude oil from soil. Natural soil, crude oil-contaminated soil, and after-remediation soil were characterized by SEM, EDX, FT-IR, and contact angle. The ability of solvent/surfactant systems to remove crude oil from soil was determined as a function of solvent polarity, mass ratio of solvent to surfactant, temperature, and ionic strength. The removal of crude oil by the toluene/AES-D-OA system was found to be more effective than the other systems. At a high toluene ratio, more than 97% of crude oil could be removed from contaminated soil. Crude oil removal efficiency was also found to increase with rising temperature or increasing ionic strength appropriately. Experimental results suggested that, compared to conventional surfactant-aided remediation, the combined utilization of surfactant and solvent achieved superior results for crude oil removal because of their similar compositions and structures in terms of aromaticity and polarity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...