Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 692: 208-216, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664913

RESUMO

It is widely known that transcriptional diversity contributes greatly to biological regulation in eukaryotes. With the development of next-generation sequencing (NGS) technologies, several studies on RNA sequencing have considerably improved our understanding of transcriptome complexity. However, obtaining full-length (FL) transcripts remains a considerable challenge because of difficulties in short read-based assembly. In the present study, single-molecule real-time (SMRT) sequencing and NGS were combined to generate the complete and FL transcriptome of Manis javanica. The results provide a comprehensive set of reference transcripts and hence contribute to the improved annotation of the M. javanica genome. We obtained 45,530 high-confidence transcripts from 19,109 genic loci, of which 8014 genes have not yet been annotated within the M. javanica genome. Furthermore, we revealed 8824 long-chain noncoding RNAs (lncRNAs). A total of 30,199 alternative splicing (AS) and 11,184 alternative polyadenylation (APA) events were identified in the sequencing data. The structure and expression level of 59 digestive enzyme genes, including 13 carbohydrase genes, 28 lipase genes and 18 protease genes, were analyzed, which might provide original data for further research on M. javanica.


Assuntos
Eutérios/genética , Perfilação da Expressão Gênica/métodos , Processamento Alternativo , Animais , Enzimas/genética , Enzimas/metabolismo , Feminino , Expressão Gênica , Loci Gênicos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Anotação de Sequência Molecular , Poliadenilação/genética , Sítios de Splice de RNA , RNA Longo não Codificante , Transcriptoma
2.
Front Microbiol ; 9: 2793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532742

RESUMO

The characteristics of flora in the intestine of an animal, including the number and abundance of different microbial species and their functions, are closely related to the diets of the animal and affect the physical condition of the host. The Malayan pangolin (Manis javanica) is an endangered species that specializes in myrmecophagy. Analyzing the microbiome in the intestine of the pangolin is imperative to protect this species. By sequencing the metagenomes of the feces of four pangolins, we constructed a non-redundant catalog of 211,868 genes representing 1,811 metagenomic species. Taxonomic annotation revealed that Bacteroidetes (49.9%), Proteobacteria (32.2%), and Firmicutes (12.6%) are the three main phyla. The annotation of gene functions identified 5,044 genes from 88 different glycoside hydrolase (GH) families in the Carbohydrate-Active enZYmes database and 114 gene modules related to chitin-degrading enzymes, corresponding to the catalytic domains of GH18 family enzymes, containing chitinase genes of classes III and V in the dataset. Fourteen gene modules corresponded to the catalytic domains of GH19 family enzymes, containing chitinase genes of classes I, II, and IV. These genes were found in 37 species belonging to four phyla: Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria. Moreover, when the metabolic pathways of these genes were summarized, 41,711 genes were associated with 147 unique KEGG metabolic pathways, and these genes were assigned to two Gene Ontology terms: metabolic process and catalytic activity. We also found several species that likely play roles in the digestion of cellulose and may be able to degrade chitin, including Enterobacter cloacae, Lactococcus lactis, Chitinimonas koreensis, and Chitinophaga pinensis. In addition, we identified some intestinal microflora and genes related to diseases in pangolins. Twenty-seven species were identified by STAMP analysis as differentially abundant in healthy and diseased animals: 20 species, including Cellulosilyticum lentocellum and Lactobacillus reuteri, were more abundant in healthy pangolins, while seven species, including Odoribacter splanchnicus, Marinilabilia salmonicolor, Xanthomonas citri, Xanthomonas vasicola, Oxalobacter formigenes, Prolixibacter bellariivorans, and Clostridium bolteae, were more abundant in diseased pangolins. These results will support the efforts to conserve pangolins.

3.
FEBS Open Bio ; 8(8): 1247-1255, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30087830

RESUMO

The Malayan pangolin (Manis javanica) is a mammal that feeds primarily on ants and termites, which contain the energy-rich carbohydrate chitin. Chitin is digestible by endogenous enzymes of the typical mammalian gastrointestinal tract, especially the acidic mammalian chitinase (AMCase). The objective of this research was to determine whether AMCase activity is expressed in the stomach of M. javanica. The stomach tissues were divided into three parts: the gastric sack, the oxyntic glands, and the pyloric musculature, which were assayed by conventional RT-PCR, quantitative reverse transcriptase-coupled PCR (qPCR) and western blot. Information regarding 3D structural models of AMCase was also obtained. In conclusion, acidic mammalian chitinase is highly expressed in the oxyntic glands of the M. javanica species.

4.
PeerJ ; 5: e4140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302388

RESUMO

The Malayan pangolin (Manis javanica) is an unusual, scale-covered, toothless mammal that specializes in myrmecophagy. Due to their threatened status and continuing decline in the wild, concerted efforts have been made to conserve and rescue this species in captivity in China. Maintaining this species in captivity is a significant challenge, partly because little is known of the molecular mechanisms of its digestive system. Here, the first large-scale sequencing analyses of the salivary gland, liver and small intestine transcriptomes of an adult M. javanica genome were performed, and the results were compared with published liver transcriptome profiles for a pregnant M. javanica female. A total of 24,452 transcripts were obtained, among which 22,538 were annotated on the basis of seven databases. In addition, 3,373 new genes were predicted, of which 1,459 were annotated. Several pathways were found to be involved in myrmecophagy, including olfactory transduction, amino sugar and nucleotide sugar metabolism, lipid metabolism, and terpenoid and polyketide metabolism pathways. Many of the annotated transcripts were involved in digestive functions: 997 transcripts were related to sensory perception, 129 were related to digestive enzyme gene families, and 199 were related to molecular transporters. One transcript for an acidic mammalian chitinase was found in the annotated data, and this might be closely related to the unique digestive function of pangolins. These pathways and transcripts are involved in specialization processes related to myrmecophagy (a form of insectivory) and carbohydrate, protein and lipid digestive pathways, probably reflecting adaptations to myrmecophagy. Our study is the first to investigate the molecular mechanisms underlying myrmecophagy in M. javanica, and we hope that our results may play a role in the conservation of this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...