Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 13(12): 7924-7935, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106237

RESUMO

Background: Although cannabinoid receptor 1 (CB1R) antagonists can inhibit bone loss in osteoporosis mouse models, different strains of mice show different bone mass phenotypes after knock out the CB1R gene. The relationship between CB1R and bone metabolism is complex, and its regulatory role in bone metabolism and as a therapeutic target for osteoporosis requires further investigation. Methods: Based on lumbar spine volumetric bone mineral density (vBMD) data of healthy female cynomolgus monkeys aged 1-25 years, naturally aged postmenopausal female osteoporotic monkeys and normal young monkeys were screened by detecting lumbar vertebrae vBMD and estradiol levels in this study. Positron emission tomography-computed tomography (PET/CT) and magnetic resonance imaging (MRI) scans were performed on the lumbar spine and brain of the two groups of monkeys using the probe [11C]OMAR, which specifically targets CB1R, and the difference in the CB1R expression of osteoporotic monkeys was evaluated. Results: The vBMD values of two standard deviations (SDs) below the peak bone value (428.1±53.8 g/cm3) were set as the reference standard for osteoporosis vBMD. Of the 49 healthy female cynomolgus monkeys, 4 postmenopausal older osteoporotic monkeys (18-26 years) and 5 young control monkeys (6-7 years) were selected, and the mean vBMD of the lumbar spine of the two groups was 295.07±19.11 and 419.72±16.14 g/cm3, respectively (P<0.0001). Radioactive uptake in the lumbar spine was linearly and negatively correlated with vBMD (r=-0.7977; P=0.01). Dynamic PET/MR imaging of the brains showed that CB1R was upregulated in the osteoporosis group, and there was a negative linear correlation between the vBMD and area under the time-radioactivity curve (AUC) of the thalamus (r=-0.8506; P=0.0153) and prefrontal cortex (r=-0.8306; P=0.0207). Conclusions: In this study, PET/CT-MRI molecular imaging technology revealed that CB1R was upregulated in the lumbar spine and brain of the osteoporosis monkeys and that CB1R may be regulated by the brain-bone axis. CB1R antagonist may be a potential drug for the treatment of osteoporosis.

2.
Biomed Pharmacother ; 168: 115842, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925936

RESUMO

As a subclass of ionotropic glutamate receptors (iGluRs), α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have been implicated in various neurological disorders and neurodegenerative diseases. To further our understanding of AMPA receptor-related disorders in the central nervous system (CNS), it is important to be able to image and quantify AMPA receptors in vivo. In this study, we identified a novel F-containing AMPA positive allosteric modulator (PAM) 6 as a potential lead compound. Molecular docking studies and CNS PET multi-parameter optimization (MPO) analysis were used to predict the absorption, distribution, metabolism, and excretion (ADME) characteristics of 6 as a PET probe. The resulting PET probe, [18F]6 (codename [18F]AMPA-2109), was successfully radiolabeled and demonstrated excellent blood-brain barrier (BBB) permeability and high brain uptake in rodents and non-human primates. However, [18F]6 did not show substantial specific binding in the rodent or non-human primate brain. Further medicinal chemistry efforts are necessary to improve specific binding, and our work may serve as a starting point for the design of novel 18F-labeled AMPA receptor-targeted PET radioligands aimed for clinical translation.


Assuntos
Receptores de AMPA , Tiadiazinas , Animais , Receptores de AMPA/metabolismo , Tiadiazinas/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Simulação de Acoplamento Molecular , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Roedores/metabolismo
3.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111280

RESUMO

The COVID-19 pandemic has posed a significant challenge to global public health. In response, the search for specific antiviral drugs that can effectively treat the disease caused by the SARS-CoV-2 virus has become a priority. While significant progress has been made in this regard, much work remains to address this ongoing crisis effectively. Favipiravir is an antiviral drug initially developed for the treatment of influenza and has received approval for emergency use for COVID-19 in many countries. A better understanding of the biodistribution and pharmacokinetics of Favipiravir in vivo would facilitate the development and translation of clinical antiviral drugs for COVID-19. Herein, we report the evaluation of [18F]Favipiravir in naive mice, transgenic mice models of Alzheimer's disease, and nonhuman primates (NHP) with positron emission tomography (PET). The [18F]Favipiravir was obtained in an overall decay-corrected radiochemical yield of 29% with a molar activity of 25 GBq/µmol at the end of synthesis (EOS). PET imaging in naive mice, transgenic mice models of Alzheimer's disease, and nonhuman primates revealed a low initial brain uptake, followed by a slow washout of [18F]Favipiravir in vivo. The [18F]Favipiravir was eliminated by a combination of hepatobiliary and urinary excretion. The low brain uptake was probably attributed to the low lipophilicity and low passive permeability of the drug. We hope this proof-of-concept study will provide a unique feature to study antiviral drugs using their corresponding isotopologues by PET.

4.
Pharmacol Res ; 189: 106681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746361

RESUMO

OBJECTIVES: Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS: Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS: [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION: Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Humanos , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Cinética , Tomografia por Emissão de Pósitrons/métodos , Primatas/metabolismo , Compostos Radiofarmacêuticos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo
5.
ACS Chem Neurosci ; 13(23): 3464-3476, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441909

RESUMO

The P2X7 receptor (P2X7R) is a key neuroinflammation target in a variety of neurodegenerative diseases. Improved radiosynthesis was developed according to the previously reported P2X7R antagonist GSK1482160. Biodistribution, radiometabolite, and dynamic positron emission tomography/computed tomography-magnetic resonance imaging (PET/CT-MRI) of the lipopolysaccharide (LPS) rat model and the transgenic mouse model of Alzheimer's disease (AD) revealed a stable, low uptake of [18F]4A in the brain of healthy rats but a higher standardized uptake value ratio (SUVR) in LPS-treated rats (1.316 ± 0.062, n = 3) than in sham (1.093 ± 0.029, n = 3). There were higher area under curves (AUCs) in the neocortex (25.12 ± 1.11 vs 18.94 ± 1.47), hippocampus (22.50 ± 3.41 vs 15.90 ± 1.59), and basal ganglia (22.26 ± 0.81 vs 15.32 ± 1.76) of AD mice (n = 3) than the controls (n = 3) (p < 0.05). Furthermore, 50 min dynamic PET in healthy nonhuman primates (NHPs) indicated [18F]4A could penetrate the blood-brain barrier (BBB). In conclusion, [18F]4A from this study is a potent P2X7R PET tracer that warrants further neuroinflammation quantification in human studies.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores Purinérgicos P2X7 , Animais , Camundongos , Ratos , Distribuição Tecidual
6.
Front Bioeng Biotechnol ; 10: 983488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147528

RESUMO

Our previous work showed that [18F]P10A-1910 was a potential radioligand for use in imaging phosphodiesterase 10A (PDE10A). Specifically, it had high brain penetration and specific binding that was demonstrated in both rodents and non-human primates. Here, we present the first automatic cGMP-level production of [18F]P10A-1910 and translational PET/MRI study in living human brains. Successful one-step radiolabeling of [18F]P10A-1910 on a GE TRACERlab FX2N synthesis module was realized via two different methods. First, formulated [18F]P10A-1910 was derived from heating spirocyclic iodonium ylide in a tetra-n-butyl ammonium methanesulfonate solution. At the end of synthesis, it was obtained in non-decay corrected radiochemical yields (n.d.c. RCYs) of 12.4 ± 1.3%, with molar activities (MAs) of 90.3 ± 12.6 µmol (n = 7) (Method I). The boronic pinacol ester combined with copper and oxygen also delivered the radioligand with 16.8 ± 1.0% n. d.c. RCYs and 77.3 ± 20.7 GBq/µmol (n = 7) MAs after formulation (Method II). The radiochemical purity, radionuclidic purity, solvent residue, sterility, endotoxin content and other parameters were all validated for human use. Consistent with the distribution of PDE10A in the brain, escalating uptake of [18F]P10A-1910 was observed in the order of cerebellum (reference region), substantial nigra, caudate and putamen. The non-displaceable binding potential (BP ND) was estimated by simplified reference-tissue model (SRTM); linear regressions demonstrated that BP ND was well correlated with the most widely used semiquantitative parameter SUV. The strongest correlation was observed with SUV(50-60 min) (R 2 = 0.966, p < 0.01). Collectively, these results indicated that a static scan protocol could be easily performed for PET imaging of PDE10A. Most importantly, that [18F]P10A-1910 is a promising radioligand to clinically quantify PDE10A.

7.
Acta Pharm Sin B ; 12(4): 1963-1975, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847497

RESUMO

As a member of cyclic nucleotide phosphodiesterase (PDE) enzyme family, PDE10A is in charge of the degradation of cyclic adenosine (cAMP) and guanosine monophosphates (cGMP). While PDE10A is primarily expressed in the medium spiny neurons of the striatum, it has been implicated in a variety of neurological disorders. Indeed, inhibition of PDE10A has proven to be of potential use for the treatment of central nervous system (CNS) pathologies caused by dysfunction of the basal ganglia-of which the striatum constitutes the largest component. A PDE10A-targeted positron emission tomography (PET) radioligand would enable a better assessment of the pathophysiologic role of PDE10A, as well as confirm the relationship between target occupancy and administrated dose of a given drug candidate, thus accelerating the development of effective PDE10A inhibitors. In this study, we designed and synthesized a novel 18F-aryl PDE10A PET radioligand, codenamed [18F]P10A-1910 ([18F]9), in high radiochemical yield and molar activity via spirocyclic iodonium ylide-mediated radiofluorination. [18F]9 possessed good in vitro binding affinity (IC50 = 2.1 nmol/L) and selectivity towards PDE10A. Further, [18F]9 exhibited reasonable lipophilicity (logD = 3.50) and brain permeability (P app > 10 × 10-6 cm/s in MDCK-MDR1 cells). PET imaging studies of [18F]9 revealed high striatal uptake and excellent in vivo specificity with reversible tracer kinetics. Preclinical studies in rodents revealed an improved plasma and brain stability of [18F]9 when compared to the current reference standard for PDE10A-targeted PET, [18F]MNI659. Further, dose-response experiments with a series of escalating doses of PDE10A inhibitor 1 in rhesus monkey brains confirmed the utility of [18F]9 for evaluating target occupancy in vivo in higher species. In conclusion, our results indicated that [18F]9 is a promising PDE10A PET radioligand for clinical translation.

8.
Bioorg Med Chem Lett ; 30(21): 127513, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860981

RESUMO

Fatty acid amide hydrolase (FAAH) exerts its main function in the catabolism of the endogenous chemical messenger anandamide (AEA), thus modulating the endocannabinoid (eCB) pathway. Inhibition of FAAH may serve as an effective strategy to relieve anxiety and possibly other central nervous system (CNS)-related disorders. Positron emission tomography (PET) would facilitate us to better understand the relationship between FAAH in certain disease conditions, and accelerate clinical translation of FAAH inhibitors by providing in vivo quantitative information. So far, most PET tracers show irreversible binding patterns with FAAH, which would result in complicated quantitative processes. Herein, we have identified a new FAAH inhibitor (1-((1-methyl-1H-indol-2-yl)methyl)piperidin-4-yl)(oxazol-2-yl)methanone (8) which inhibits the hydrolysis of AEA in the brain with high potency (IC50 value 11 nM at a substrate concentration of 0.5 µM), and without showing time-dependency. The PET tracer [11C]8 (also called [11C]FAAH-1906) was successfully radiolabeled with [11C]MeI in 17 ± 6% decay-corrected radiochemical yield (n = 7) with >74.0 GBq/µmol (2 Ci/µmol) molar activity and >99% radiochemical purity. Ex vivo biodistribution and blocking studies of [11C]8 in normal mice were also conducted, indicating good brain penetration, high brain target selectivity, and modest to excellent target selectivity in peripheral tissues. Thus, [11C]8 is a potentially useful PET ligand with enzyme inhibitory and target binding properties consistent with a reversible mode of action.


Assuntos
Amidoidrolases/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Tomografia por Emissão de Pósitrons , Amidoidrolases/análise , Amidoidrolases/metabolismo , Animais , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Hidrólise , Ligantes , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...