Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 13(5): 6258-6272, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678621

RESUMO

It has been confirmed that the new coronavirus SARS-CoV-2 caused the global pandemic of coronavirus disease 2019 (COVID-19). Studies have found that 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for virus replication, and could be used as a potential target to inhibit SARS-CoV-2. In this work, 3CLpro was used as the target to complete the high-throughput virtual screening of the FDA-approved drugs, and Indinavir and other 10 drugs with high docking scores for 3CLpro were obtained. Studies on the binding pattern of 3CLpro and Indinavir found that Indinavir could form the stable hydrogen bond (H-bond) interactions with the catalytic dyad residues His41-Cys145. Binding free energy study found that Indinavir had high binding affinity with 3CLpro. Subsequently, molecular dynamics simulations were performed on the 3CLpro and 3CLpro-Indinavir systems, respectively. The post-dynamic analyses showed that the conformational state of the 3CLpro-Indinavir system transformed significantly and the system tended to be more stable. Moreover, analyses of the residue interaction network (RIN) and H-bond occupancy revealed that the residue-residue interaction at the catalytic site of 3CLpro was significantly enhanced after binding with Indinavir, which in turn inactivated the protein. In short, through this research, we hope to provide more valuable clues against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , SARS-CoV-2/enzimologia , Inibidores de Protease Viral/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Aprovação de Drogas , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Indinavir/química , Indinavir/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Inibidores de Protease Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...