Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 125(Pt A): 111006, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913568

RESUMO

With the rapid development of ultra-high voltage direct current (UHV DC) transmission technology, the intensity of electric fields in the surrounding environment of UHV DC transmission lines significantly increased, which raised public concerns about the potential health effects of electric fields. Previous studies have shown that the exposure of electromagnetic field was associated with cancer. B lymphocytes can produce autoantibodies and tumor growth factors through proliferation, which contributes to the development of cancer. Therefore, this study explored the effect and mechanism of static electric field (SEF) generated by DC transmission lines on the proliferation levels of B lymphocytes. Male mice were exposed to SEF. After the exposure of 7 and 14 days, the proliferation levels of B lymphocytes in the spleens of mice were measured, respectively. To validate biological effect discovered in animal experiments and elucidate the mechanism of the effect from the perspective of signaling pathways, lymphocytes were exposed to SEF. After the exposure of 24, 48 or 72 h, the proliferation levels of B lymphocytes, the expression levels of key proteins and cell cycle were determined. This study found that SEF exposure activated NF-κB pathway by stimulating ERK1/2 pathway and promoted B lymphocytes to enter S phase from G0/G1 phase. Meanwhile, SEF exposure also promoted B lymphocytes to enter G2 phase. Namely, SEF exposure significantly promoted the proliferation of B lymphocytes. This discovery provided theoretical and practical support for the prevention or application of negative or positive effects caused by SEF exposure and provided directions for future research.


Assuntos
Neoplasias , Transdução de Sinais , Masculino , Camundongos , Animais , NF-kappa B , Linfócitos B , Proliferação de Células
2.
ACS Appl Mater Interfaces ; 14(15): 17763-17773, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384643

RESUMO

This work presents the preparation and property characterization of a biomass gelatin (GA)-based aerogel. Halloysite nanotubes (HNTs) were used to improve the mechanical strength, pore size distribution, and thermal stability of the aerogel. Polyethyleneimine (PEI) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) were utilized to increase the interfacial interaction between HNTs and GA through chemical cross-linking. Green, sustainable, and low-cost composite aerogels were prepared by "cogel" and freeze-drying techniques. The experimental results show that the HNTs/GA composite aerogel has a low density (31.98-57.48 mg/cm3), a high porosity (>95%), a low thermal conductivity (31.85-40.16 mW m-1 K-1), and superior moldability. In addition, the mechanical strength and thermal insulation properties of the HNTs/GA composite aerogels with a "thorn"-like lamellar porous network structure are different in the axial direction versus the radial direction. The maximum compressive strength, maximum compressive modulus, and corresponding specific modulus in the axial direction were 1.81 MPa, 5.45 MPa, and 94.8 kN m kg-1, respectively. Therefore, the biomass/clay composite aerogel will be a sustainable and renewable functional material with high mechanical strength and thermal insulation properties, which is expected to further promote biomass and clay for high value utilization.

3.
Appl Microbiol Biotechnol ; 104(19): 8299-8308, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32857198

RESUMO

In previous studies, we isolated a novel ß-glucosidase from Penicillium oxalicum 16 (16BGL), which is useful for producing cellulosic ethanol. However, 16BGL has a relatively low enzyme activity and product tolerance; besides, a huge gap exists between the optimum temperature of 16BGL (70 °C) and the fermentation temperature for producing cellulosic ethanol (40 °C). Here, we present a directed evolution-based study, which combines one-round error-prone PCR with three rounds of high-throughput screening, for coevolving multiple enzymatic characteristics of 16BGL. We identified an improved variant Y-1-B1 with a triple mutant (G414S/D421V/T441S). Y-1-B1 had an optimum temperature of 50 °C, much closer to the fermentation temperature. The catalytic efficiency of Y-1-B1 for hydrolyzing pNPG was 1355 mM-1 s-1 at 50 °C and pH 5, significantly higher than that of 16BGL (807 mM-1 s-1). Y-1-B1 also achieved a slightly reduced strength of product inhibition of 1.1 at a glucose concentration of 20 mM, compared with the ratio of 1.3 for 16BGL. A maximum titer of 6.9 g/L for ethanol production was achieved in the reaction with Y-1-B1, which was 22% higher than that achieved with 16BGL. Structure modeling revealed that the mutations are distant from the active-site pocket. Therefore, we performed molecular dynamics (MD) simulations to understand why these mutations can improve catalytic efficiency. MD simulation revealed that the nucleophilic residue Asp261 had a much closer contact with the glucosidic center of pNPG in the simulation with Y-1-B1 than that with 16BGL, suggesting that the mutant is more favorable for catalysis. KEY POINTS: • Multiple enzymatic properties of Penicillium oxalicum 16 BGL were coevolved. • A catalytically efficient triple mutant G414S/D421V/T441S was reported. • Molecular dynamics simulation supported the enhanced catalytic activity.


Assuntos
Penicillium , beta-Glucosidase , Etanol , Fermentação , Concentração de Íons de Hidrogênio , Penicillium/genética , Penicillium/metabolismo , Temperatura , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
4.
Biotechnol Lett ; 42(11): 2239-2250, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32583369

RESUMO

ß-Glucosidase (BGL) plays a key role in cellulose hydrolysis. However, it is still a great challenge to enhance product tolerance and enzyme activity of BGL simultaneously. Here, we utilized one round error-prone PCR to engineer the Penicillium oxalicum 16 BGL (16BGL) for improving the cellulosic ethanol yield. We identified a new variant (L-6C), a triple mutant (M280T/V484L/D589E), with enhanced catalytic efficiency ([Formula: see text]) for hydrolyzing pNPG and reduced strength of inhibition ([Formula: see text]) by glucose. To be specific, L-6C achieved a [Formula: see text] of 0.35 at a glucose concentration of 20 mM, which was 3.63 times lower than that attained by 16BGL. The catalytic efficiency for L-6C to hydrolyze pNPG was determined to be 983.68 mM-1 s-1, which was 22% higher than that for 16BGL. However, experiments showed that L-6C had reduced binding affinity (2.88 mM) to pNGP compared with 16BGL (1.69 mM). L-6C produced 6.15 g/L ethanol whose yield increased by about 10% than 16BGL. We performed molecular docking and molecular dynamics (MD) simulation, and binding free energy calculation using the Molecular Mechanics/Poisson Boltzmann surface area (MM/PBSA) method. MD simulation together with the MM/PBSA calculation suggested that L-6C had reduced binding free energy to pNPG, which was consistent with the experimental data.


Assuntos
Mutação , Penicillium/enzimologia , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Domínio Catalítico , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nitrofenilgalactosídeos/metabolismo , Penicillium/genética , Ligação Proteica , Engenharia de Proteínas
5.
Appl Biochem Biotechnol ; 191(2): 772-784, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31858406

RESUMO

ß-Glucosidase (BGL) is a rate-limiting enzyme of lignocellulose hydrolysis for second-generation bioethanol production, but its inhibition by lignocellulose pretreatment products, ethanol, and salt is apparent. Here, the recombinant Penicillium oxalicum 16 BGL 1 (rPO16BGL1) from Pichia pastoris GS115 kept complete activity at 0.2-1.4 mg/mL furan derivatives and phenolic compounds, 50 mg/mL sodium chloride (potassium chloride), or 100 mg/mL ethanol at 40 °C. rPO16BGL1 retained above 50% residual activity at 30 mg/mL organic acid sodium, and 60% residual activity at 40 °C with 300 mg/mL ethanol. Sodium chloride and potassium chloride had a complicated effect on rPO16BGL1, which resulted in activation or inhibition. The inhibition kinetics of the enzyme reaction demonstrated that organic acids and organic acid sodium were non-competitive inhibitors and that ethanol was a competitive inhibitor at < 1.5 mg/mL salicin. Moreover, substrate inhibition of the enzyme was found at > 2 mg/mL salicin, and the Km/KI and Km/KSI average values revealed that the inhibitory strength was ranked as salicin-organic acids > organic acids > salicin-organic acid sodium salt > organic acid sodium salt > salicin > salicin-KCl > salicin-NaCl > salicin-ethanol > ethanol.


Assuntos
Etanol/antagonistas & inibidores , Lignina/antagonistas & inibidores , Penicillium/genética , Sais/antagonistas & inibidores , beta-Glucosidase/efeitos dos fármacos , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática , Regulação Fúngica da Expressão Gênica , Hidrólise , Cinética , Cloreto de Potássio , Saccharomycetales/genética , Análise de Sequência , Cloreto de Sódio/farmacologia , beta-Glucosidase/química
6.
Indian J Microbiol ; 58(4): 440-447, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262954

RESUMO

A wild-type strain was isolated from slightly rotted pears after three rounds of enrichment culture, identified as Saccharomyces cerevisiae 3308, and evaluated for its fermentation capability of second generation bioethanol and tolerance of temperature, glucose and ethanol. S. cerevisiae 3308 was mutated by using the physical and chemical mutagenesis methods, ultraviolet (UV) and diethyl sulfate (DES), respectively. Positive mutated strains were mainly generated by the treatment of UV, but numerous negative mutations emerged under the treatment of DES. A positive mutated strain, UV-20, produced ethanol from 62.33 ± 1.34 to 122.22 ± 2.80 g/L at 30-45 °C, and had a maximum yield of ethanol at 37 °C. Furthermore, UV-20 produced 121.18 ± 2.51 g/L of second generation bioethanol at 37 °C. Simultaneously, UV-20 exhibited superior tolerance to 50% of glucose and 21% of ethanol. In a conclusion, all of these results indicated that UV-20 has a potential industrial application value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...