Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2403284, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037367

RESUMO

Thrombus causes a serious condition characterized by the formation of blood clots in blood vessels or heart, potentially leading to life-threatening emergencies. Photothermal therapy (PTT) serves as a treatment for thrombosis that provides noninvasive thrombus dissolution and fewer bleeding side effects. However, the high temperatures generated by PTT can exacerbate vascular inflammation and promote thrombus recurrence. In this study, a photothermal hydrogen sulfide (H2S) nanogenerator (PSA@ADT-OH) is constructed using a perylene-cored photothermal agent (PSA) coassembled with a H2S donor ADT-OH. The system PSA@ADT-OH demonstrates outstanding targeting and accumulation efficiency against blood flow shear forces. It also provides sustained H2S release at thrombus sites, contributing to antiplatelet aggregation, reactive oxygen species clearance, and vascular healing. This approach opens up new possibilities for advanced thrombus treatment.

2.
Front Pharmacol ; 15: 1419985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933677

RESUMO

Background: Unusual site deep vein thrombosis (DVT) was defined as venous thromboembolism (VTE) occurring outside the conventional deep veins of the lower extremity or pulmonary arteries. However, the optimal anticoagulation therapy for unusual site DVT remained unclear. This study aims to evaluate the efficacy and safety of rivaroxaban in unusual site DVT. Methods: This retrospective cohort study enrolled consecutive patients at Nanjing Drum Tower Hospital between January 2011 and December 2021 who were diagnosed with unusual site DVT. Patients were divided into two groups based on their ultimate medication choice: the warfarin group and the rivaroxaban group. The demographic characteristics were recorded for all enrolled patients. Clinical outcomes included recurrent VTE, bleeding complications and major bleeding. Results: A total of 1,088 patients were divided into warfarin (n = 514) and rivaroxaban (n = 574) groups. After the stabilized inverse probability of treatment weighting, Hazard Ratios for warfarin vs. rivaroxaban of recurrent VTE, bleeding complications and major bleeding were 0.52(95% CI: 0.25-1.08), 0.30(95% CI: 0.14-0.60), and 0.33 (95% CI, 0.13-0.74), respectively. Risk of clinical outcomes in specified subgroups for age, gender, renal function, thrombosis sites and diagnosis were assessed. The interaction of gender and treatment on major bleeding was significant (P for interaction = 0.062). Otherwise, there was no significant interaction between the other subgroups and the treatment group in terms of clinical outcomes. Conclusion: Compared with warfarin, rivaroxaban exhibited comparable efficacy for the anticoagulant treatment of unusual site DVT, associated with a lower risk of bleeding complications and major bleeding.

3.
Research (Wash D C) ; 7: 0310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410279

RESUMO

The activation of pro-inflammatory M1-type macrophages by overexpression of reactive oxygen species (ROS) and reactive nitrogen species (RONS) in synovial membranes contributes to osteoarthritis (OA) progression and cartilage matrix degradation. Here, combing Pt and Se with potent catalytic activities, we developed a hybrid Pt-Se nanozymes as ROS and RONS scavengers to exert synergistic effects for OA therapy. As a result, Pt-Se nanozymes exhibited efficient scavenging effect on ROS and RONS levels, leading to repolarization of M1-type macrophages. Furthermore, the polarization of synovial macrophages to the M2 phenotype inhibited the expression of pro-inflammatory factors and salvaged mitochondrial function in arthritic chondrocytes. In vivo results also suggest that Pt-Se nanozymes effectively suppress the early progression of OA with an Osteoarthritis Research International Association score reduction of 68.21% and 82.66% for 4 and 8 weeks, respectively. In conclusion, this study provides a promising strategy to regulate inflammatory responses by macrophage repolarization processes for OA therapeutic.

4.
Biomed Pharmacother ; 165: 115276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542852

RESUMO

Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.


Assuntos
Microbioma Gastrointestinal , Propionatos , Masculino , Animais , Propionatos/uso terapêutico , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia , Butiratos/uso terapêutico , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Macrófagos/metabolismo
5.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299607

RESUMO

As one of the most critical parameters to evaluate the quality and performance of mobile phones, real-time temperature monitoring of mobile phones' integrated chips is vital in the electronics industry. Although several different strategies for the measurement of chips' surface temperature have been proposed in recent years, distributed temperature monitoring with high spatial resolution is still a hot issue with an urgent need to be solved. In this work, a fluorescent film material with photothermal properties containing thermosensitive upconversion nanoparticles (UCNPs) and polydimethylsiloxane (PDMS) is fabricated for the monitoring of the chips' surface temperature. The presented fluorescent films have thicknesses ranging from 23 to 90 µm and are both flexible and elastic. Using the fluorescence intensity ratio (FIR) technique, the temperature-sensing properties of these fluorescent films are investigated. The maximum sensitivity of the fluorescent film was measured to be 1.43% K-1 at 299 K. By testing the temperature at different positions of the optical film, distributed temperature monitoring with a high spatial resolution down to 10 µm on the chip surface was successfully achieved. It is worth mentioning that the film maintained stable performance even under pull stretching up to 100%. The correctness of the method is verified by taking infrared images of the chip surface with an infrared camera. These results demonstrate that the as-prepared optical film is a promising anti-deformation material for monitoring temperature with high spatial resolution on-chip surfaces.

6.
Nucleic Acids Res ; 51(D1): D1263-D1275, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36243960

RESUMO

Widespread drug resistance has become the key issue in global healthcare. Extensive efforts have been made to reveal not only diverse diseases experiencing drug resistance, but also the six distinct types of molecular mechanisms underlying this resistance. A database that describes a comprehensive list of diseases with drug resistance (not just cancers/infections) and all types of resistance mechanisms is now urgently needed. However, no such database has been available to date. In this study, a comprehensive database describing drug resistance information named 'DRESIS' was therefore developed. It was introduced to (i) systematically provide, for the first time, all existing types of molecular mechanisms underlying drug resistance, (ii) extensively cover the widest range of diseases among all existing databases and (iii) explicitly describe the clinically/experimentally verified resistance data for the largest number of drugs. Since drug resistance has become an ever-increasing clinical issue, DRESIS is expected to have great implications for future new drug discovery and clinical treatment optimization. It is now publicly accessible without any login requirement at: https://idrblab.org/dresis/.


Assuntos
Descoberta de Drogas , Bases de Dados Factuais , Resistência a Medicamentos
7.
J Neuroinflammation ; 19(1): 244, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195881

RESUMO

BACKGROUND: Neuropathic pain is still a challenge for clinical treatment as a result of the comprehensive pathogenesis. Although emerging evidence demonstrates the pivotal role of glial cells in regulating neuropathic pain, the role of Schwann cells and their underlying mechanisms still need to be uncovered. Pannexin 1 (Panx 1), an important membrane channel for the release of ATP and inflammatory cytokines, as well as its activation in central glial cells, contributes to pain development. Here, we hypothesized that Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain. METHODS: A mouse model of chronic constriction injury (CCI) in CD1 adult mice or P0-Cre transgenic mice, and in vitro cultured Schwann cells were used. Intrasciatic injection with Panx 1 blockers or the desired virus was used to knock down the expression of Panx 1. Mechanical and thermal sensitivity was assessed using Von Frey and a hot plate assay. The expression of Panx 1 was measured using qPCR, western blotting, and immunofluorescence. The production of cytokines was monitored through qPCR and enzyme-linked immunosorbent assay (ELISA). Panx1 channel activity was detected by ethidium bromide (EB) uptake. RESULTS: CCI induced persistent neuroinflammatory responses and upregulation of Panx 1 in Schwann cells. Intrasciatic injection of Panx 1 blockers, carbenoxolone (CBX), probenecid, and Panx 1 mimetic peptide (10Panx) effectively reduced mechanical and heat hyperalgesia. Probenecid treatment of CCI-induced mice significantly reduced Panx 1 expression in Schwann cells, but not in dorsal root ganglion (DRG). In addition, Panx 1 knockdown in Schwann cells with Panx 1 shRNA-AAV in P0-Cre mice significantly reduced CCI-induced neuropathic pain. To determine whether Schwann cell Panx 1 participates in the regulation of neuroinflammation and contributes to neuropathic pain, we evaluated its effect in LPS-treated Schwann cells. We found that inhibition of Panx 1 via CBX and Panx 1-siRNA effectively attenuated the production of selective cytokines, as well as its mechanism of action being dependent on both Panx 1 channel activity and its expression. CONCLUSION: In this study, we found that CCI-related neuroinflammation correlates with Panx 1 activation in Schwann cells, indicating that inhibition of Panx 1 channels in Schwann cells reduces neuropathic pain through the suppression of neuroinflammatory responses.


Assuntos
Carbenoxolona , Neuralgia , Trifosfato de Adenosina/farmacologia , Animais , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Conexinas/genética , Conexinas/metabolismo , Citocinas/metabolismo , Etídio/metabolismo , Etídio/farmacologia , Etídio/uso terapêutico , Hiperalgesia/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Probenecid/metabolismo , Probenecid/farmacologia , Probenecid/uso terapêutico , RNA Interferente Pequeno/metabolismo , Células de Schwann
8.
Front Pharmacol ; 13: 1019312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313354

RESUMO

The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.

9.
J Biol Chem ; 298(10): 102452, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063998

RESUMO

The pMN domain is a restricted domain in the ventral spinal cord, defined by the expression of the olig2 gene. Though it is known that the pMN progenitor cells can sequentially generate motor neurons and oligodendrocytes, the lineages of these progenitors are controversial and how their progeny are generated is not well understood. Using single-cell RNA sequencing, here, we identified a previously unknown heterogeneity among pMN progenitors with distinct fates and molecular signatures in zebrafish. Notably, we characterized two distinct motor neuron lineages using bioinformatic analysis. We then went on to investigate specific molecular programs that regulate neural progenitor fate transition. We validated experimentally that expression of the transcription factor myt1 (myelin transcription factor 1) and inner nuclear membrane integral proteins lbr (lamin B receptor) were critical for the development of motor neurons and neural progenitor maintenance, respectively. We anticipate that the transcriptome features and molecular programs identified in zebrafish pMN progenitors will not only provide an in-depth understanding of previous findings regarding the lineage analysis of oligodendrocyte progenitor cells and motor neurons but will also help in further understanding of the molecular programming involved in neural progenitor fate transition.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor de Lamina B
10.
Front Oncol ; 12: 943703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928866

RESUMO

Purpose: The aim of this study is to evaluate the efficacy and toxicity of image-guided high-dose rate (HDR) interstitial brachytherapy (ISBT) for the reirradiation of cervical cancer within a previously irradiated area. Methods and materials: Twenty-three consecutive patients with cervical cancer were reirradiated with curative intent using brachytherapy (BT) with or without external beam irradiation. The median biologically equivalent dose in 2-Gy fractions (EQD2) for reirradiation was 64.0 Gy (range: 31.3-95.1 Gy), and the median cumulative EQD2 (for primary treatment and reirradiation) was 152.4 Gy (range: 97.8-200.9 Gy). The average clinical target volume was 82.9 cm3 (range: 26.9-208.3 cm3), and the median treatment-free interval (TFI) was 13 months (range: 3-93 months). Results: The median follow-up time was 19 months (range: 2-59 months). The complete response rate after reirradiation was 56.5%. The 1-, 2- 3-, and 4-year post-relapse survival (PRS) rates were 65.2%, 43.5%, 33.8%, and 27.1%, respectively. The median reirradiation EQD2 D2cc of rectum and bladder was 39.5 Gy (range = 14.6-96.2 Gy) and 52.1 Gy (range = 29.1-114.2 Gy). The median cumulative EQD2 D2cc of rectum and bladder was 115.0 Gy (range = 84.4-189.3 Gy) and 130.5 Gy (range = 95.5-173.5 Gy). During follow-up, nine (39.1%) patients had experienced grade 3 or 4 late toxicities. Grade ≥3 rectal toxicity occurred in three patients (13.0%). Grade ≥3 urinary toxicity occurred in five patients (21.7%). One patient (4.3%) had both grade ≥3 urinary and rectal toxicity. Tumor volume, TFI, tumor invasion organ number, and local control were significant prognostic factors adversely affecting OS. Conclusions: For recurrent cervical cancer after radiotherapy, reirradiation of HDR-ISBT is feasible, even if the local tumor invasion is large, with a good chance of survival and acceptable side effects.

11.
J Opt Soc Am A Opt Image Sci Vis ; 39(2): 227-232, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200957

RESUMO

Achieving extremely high sensitivity is an important indicator in the development of novel and stable gas concentration sensors. In this paper, we present a gas concentration sensor with parity-time symmetry for high sensitivity at low concentrations. The proposed sensor can detect toxic gases, such as benzene, bromine, and acetone, by probing the faint changing of the permittivity. Furthermore, the level of the sensitivity can be adjusted by the resistance segment, which is realized by various metallic formations. Our proposed structure provides a novel idea for the development of future gas concentration sensors, showing an exciting prospect for gas sensing technologies.

12.
Talanta ; 239: 123063, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890938

RESUMO

In this work, a laser-induced fluorescence (LIF) detection system built in a modular assembling mode was developed based on commercial LEGO blocks and 3D printed blocks. We designed and fabricated a variety of 3D printed building blocks fixed with optical components, including laser light source, filters, lens, dichroic mirror, photodiode detector, and control circuits. Utilizing the relatively high positioning precision of the plug-in blocks, a modular construction strategy was adopted using the flexible plug-in combination of the blocks to build a highly sensitive laser-induced fluorescence detection system, LIFGO. The LIFGO system has a simple structure which could be constructed by inexperienced users within 3 h. We optimized the structure and tested the performance of the LIFGO system, and its detection limits for sodium fluorescein solution in 100 µm i.d. and 250 µm i.d. capillaries were 7 nM and 0.9 nM, respectively. Based on the LIFGO system, we also built a simple capillary electrophoresis (CE) system and applied it to the analysis of DNA fragments to demonstrate its application possibility in biochemical analysis. The separation of 7 fragments in DL500 DNA markers were completed in 600 s. Because of the features of low cost (less than $100) and easy-to-build construction, we introduced the LIFGO system to the experimental teaching of instrumental analysis for undergraduate students. The modular construction form of the LIF detection system greatly reduces the threshold of instrument construction, which is conducive to the popularization of the LIF detection technique in routine laboratories as well as the reform of experimental teaching mode.


Assuntos
Eletroforese Capilar , Lasers , DNA , Fluoresceína , Fluorescência , Humanos
13.
J Aerosol Sci ; 1592022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38650717

RESUMO

We have recently developed a low-cost spark-induced breakdown spectroscopy (SIBS) instrument for in-situ analysis of toxic metal aerosol particles that we call TARTA (toxic-metal aerosol real time analyzer). In this work, we applied machine learning methods to improve the quantitative analysis of elemental mass concentrations measured by this instrument. Specifically, we applied least absolute shrinkage and selection operator (LASSO), partial least squares (PLS) regression, principal component regression (PCR), and support vector regression (SVR) to develop multivariate calibration models for 13 metals (e.g., Cr, Cu, Mn, Fe, Zn, Co, Al, K, Be, Hg, Cd, Pb, and Ni), some of which are included on the US EPA hazardous air pollutants (HAPS) list. The calibration performance, adjusted coefficient of determination (R2) and normalized root mean square error (RMSE), and limit of detection (LOD) of the proposed models were compared to those of univariate calibration models for each analyte. Our results suggest that machine learning models tend to have better prediction accuracy and lower LODs than conventional univariate calibration, of which the LASSO approach performs the best with R2 > 0.8 and LODs of 40-170 ng m-3 at a sampling time of 30 min and a flow rate of 15 l min -1. We then assessed the applicability of the LASSO model for quantifying elemental concentrations in mixtures of these metals, serving as independent validation datasets. Ultimately, the LASSO model developed in this work is a very promising machine learning approach for quantifying mass concentration of metals in aerosol particles using TARTA.

14.
Front Immunol ; 12: 764749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925334

RESUMO

Several C2 domain-containing proteins play key roles in tumorigenesis, signal transduction, and mediating protein-protein interactions. Tandem C2 domains nuclear protein (TC2N) is a tandem C2 domain-containing protein that is differentially expressed in several types of cancers and is closely associated with tumorigenesis and tumor progression. Notably, TC2N has been identified as an oncogene in lung and gastric cancer but as a tumor suppressor gene in breast cancer. Recently, a large number of tumor-associated antigens (TAAs), such as heat shock proteins, alpha-fetoprotein, and carcinoembryonic antigen, have been identified in a variety of malignant tumors. Differences in the expression levels of TAAs between cancer cells and normal cells have led to these antigens being investigated as diagnostic and prognostic biomarkers and as novel targets in cancer treatment. In this review, we summarize the clinical characteristics of TC2N-positive cancers and potential mechanisms of action of TC2N in the occurrence and development of specific cancers. This article provides an exploration of TC2N as a potential target for the diagnosis and treatment of different types of cancers.


Assuntos
Antígenos de Neoplasias/genética , Genes Supressores de Tumor , Neoplasias/genética , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias/imunologia
15.
ChemSusChem ; 14(20): 4377-4396, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34342394

RESUMO

The catalytic hydrodeoxygenation (HDO) of lignin has long been a hot research topic and vacancy engineering is a new means to develop more efficient catalysts for this process. Oxygen vacancies and sulfur vacancies are both widely used in HDO. Based on the current research status of vacancies in the field of lignin-derived oxygenates, this Minireview discusses in detail design methods for vacancy engineering, including surface activation, synergistic modification, and morphology control. Moreover, it is clarified that in the HDO reaction, vacancies can act as acidic sites, promote substrate adsorption, and regulate product distribution, whereas for the catalysts, vacancies can enhance stability and reducibility, improve metal dispersion, and improve redox capacity. Finally, the characterization of vacancies is summarized and strategies are proposed to address the current deficiencies in this field.

16.
J Inflamm Res ; 14: 2731-2740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194236

RESUMO

PURPOSE: The prediction of the loss of response (LOR) to infliximab (IFX) is crucial for optimizing treatment strategies and shifting biologics. However, a secondary LOR is difficult to predict by endoscopy due to the intestinal stricture, perforation, and fistulas. This study aimed to develop and validate a radiomic nomogram for the prediction of secondary LOR to IFX in patients with Crohn's disease (CD). PATIENTS AND METHODS: A total of 186 biologic-naive patients diagnosed with CD between September 2016 and June 2019 were enrolled. Secondary LOR was determined during week 54. Computed tomography enterography (CTE) texture analysis (TA) features were extracted from lesions and analyzed using LIFEx software. Feature selection was performed by least absolute shrinkage and selection operator (LASSO) and ten-fold cross validation. A nomogram was constructed using multivariable logistic regression, and the internal validation was approached by ten-fold cross validation. RESULTS: Predictors contained in the radiomics nomogram included three first-order and five second-order signatures. The prediction model presented significant discrimination (AUC, 0.880; 95% CI, 0.816-0.944) and high calibration (mean absolute error of = 0.028). Decision curve analysis (DCA) indicated that the nomogram provided clinical net benefit. Ten-fold cross validation assessed the stability of the nomogram with an AUC of 0.817 and an accuracy of 0.819. CONCLUSION: This novel radiomics nomogram provides a predictive tool to assess secondary LOR to IFX in patients with Crohn's disease. This tool will help physicians decide when to switch therapy.

17.
Nanoscale ; 13(22): 9978-9988, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34032238

RESUMO

Thus far, Yb3+ has usually served as a sensitizer to improve energy harvesting in lanthanide ion based luminescent materials. Herein, besides the well accepted character as a sensitizer, we revealed a new role of Yb3+, namely an energy reservoir, to improve the upconversion efficiency of several lanthanide activators. The energy cycling between lanthanide activator A3+ and energy reservoir Yb3+ is mainly responsible for the improvement. This energy cycling can facilitate energy utilization by A3+ for the generated upconversion luminescence. Specifically, this energy cycling not only alleviates the dissipation of energy produced at the intermediate level, needed to promote electrons to a higher energy level, but also provides an additional excited-state absorption route for A3+. The benefits of the proposed Yb3+ energy reservoir as well as the energy cycling mechanisms were verified using three representative activators, Nd3+, Tm3+, and Er3+. This study can open new possible avenues to exploit Yb3+ and enrich the available upconversion luminescence pathways of lanthanide ions.

18.
Front Pharmacol ; 12: 654985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986682

RESUMO

Background: The primary non-response (PNR) rate of infliximab (IFX) varies from 20 to 46% for the treatment of Crohn's disease (CD). Detected PNR reduces the improper use of specific treatments. To date, there is hardly any knowledge regarding early markers of PNR. The aim of this study was to evaluate the role of Interleukin-6 (IL-6) as an early predictor of PNR of IFX for the treatment of CD. Methods: We enrolled 322 bio-naïve patients diagnosed with CD from January 2016 to May 2020. Primary response was determined at week 14. Multivariable logistic regression was used to construct prediction models. Area under the curve (AUC), calibration and decision curve analyses (DCA) were assessed in the validation cohort. GEO data were analyzed to identify potential mechanisms of IL-6 in IFX therapy for CD. Results: PNR occurred in 31.06% (100 of 322) patients who were assessable at week 14. IL-6 levels significantly decreased after IFX therapy (p < 0.001). The validation model containing IL-6 presented enhanced discrimination with an AUC of 0.908 and high calibration. Decision curve analysis (DCA) indicated that the model added extra predictive value. GEO data confirmed the IL-6 levels were increased in the PNR group and IL-6-related differentially expressed genes (DEGs) were enriched in the inflammatory response. Conclusions: We concluded that IL-6 may be used as a predictive factor to assess the risk of PNR to IFX therapy.

19.
Sci Rep ; 11(1): 5669, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707495

RESUMO

Ulcerative colitis is a chronic, idiopathic, and inflammatory disease of the rectal and colonic mucosa, the behavior of which is of heterogeneity in individuals. Here, we explored the multifactor-mediated functional modules associated with ulcerative colitis classification in the whole genome. Datasets downloaded from the GEO database were used to identify differentially expressed genes between ulcerative colitis patients and healthy individuals initially, followed by acquisition of the remaining ulcerative colitis -related genes from the OMIM and STRING databases. The results identified 914 ulcerative colitis-related genes, of which 60 were differentially expressed genes obtained from GEO datasets. Through weighted co-expression network analysis of ulcerative colitis-related genes, four modules were obtained, three of which were related to ulcerative colitis. Following interactions between microRNA, long noncoding RNA, transcription factors, and module hub genes were predicted and used to construct ulcerative colitis multifactor networks. Additionally, we performed consensus clustering of the ulcerative colitis samples. The results revealed that ulcerative colitis could be divided into four subtypes, with six hub genes identified as potential biomarkers for classification. These findings offer novel insights into ulcerative colitis and a basis for disease classification of ulcerative colitis.


Assuntos
Colite Ulcerativa/classificação , Colite Ulcerativa/genética , Redes Reguladoras de Genes , Estudos de Casos e Controles , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Mapas de Interação de Proteínas , Software
20.
Opt Lett ; 46(4): 900-903, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577543

RESUMO

To date, color-tunable photon upconversion (UC) in a single nanocrystal (NC) still suffers from cumbersome structures. Herein, we prepared a compact two-layer NC with bright and high-purity red and green UC emission upon 980 and 1530 nm excitation, respectively. The effects of trace Tm3+ doping and inert-shell coating on the UC color and intensity were discussed. In addition, the color tuning via various dual-excitation configurations and the color stability with temperature and excitation intensity were demonstrated. The proposed UC NC, featuring compact structure and high-quality color tuning, can lower the synthesis time cost and difficulty of its kind and can find wide applications in multi-channel imaging, display devices, anti-counterfeiting, and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...