Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38896348

RESUMO

Metamizole easily decomposes in the body and has a short action time and low bioavailability. Hence, frequent injection administrations are needed to maintain its plasma concentration. This study aimed to design and develop an in-situ gel based on poloxamer 407 and 188 to assess its long-acting antipyretic effects. The in-situ gel-forming systep00m with optimum sol-gel transition temperature of 35.9 °C to 36.3 °C could be formed using a combination of P407 at a ratio of 21-23% (w/v) and P188 at a ratio of 2-4% (w/v). In vitro erosion test showed that the in-situ gel's erosion curve and the metamizole release rate both reached about 90% at 6 h, revealing a good linear relationship between the in-situ gel erosion and the drug release. In vitro release test with dialysis tube showed that the release of metamizole from the in-situ gel was remarkably slower than that from the metamizole solution. Approximately 85% of metamizole was released in the dialysis tube within 7 h, implying a good sustained release effect. Pharmacodynamic study showed that the in-situ gel injection extended the action time of metamizole relative to that when using the metamizole solution. Pharmacokinetic study revealed that the in-situ gel significantly increased the blood serum half-life and area under the curve), contributing to a sustained release and improved bioavailability. This study demonstrated that in-situ gel injection could prolong the action of metamizole in the body to reduce the number of administration times and has good clinical application.

2.
Appl Microbiol Biotechnol ; 108(1): 386, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896257

RESUMO

Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.


Assuntos
Antibacterianos , Biofilmes , Nanopartículas , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Nanopartículas/química , Antibacterianos/farmacologia , Humanos , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Reinfecção/prevenção & controle , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos
3.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728939

RESUMO

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Assuntos
Antibacterianos , Proteínas de Bactérias , Escherichia coli , Fezes , Tipagem de Sequências Multilocus , Ursidae , beta-Lactamases , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , beta-Lactamases/genética , Ursidae/microbiologia , China , Antibacterianos/farmacologia , Fezes/microbiologia , Proteínas de Bactérias/genética , Ecossistema , Filogenia , Testes de Sensibilidade Microbiana , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética
4.
Int J Biol Macromol ; 263(Pt 2): 130452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417755

RESUMO

As a traditional Chinese medicinal and edible homologous plant, Onosma glomeratum Y. L. Liu has been used for treating lung diseases in Tibet. In this study, a pectin polysaccharide, OGY-LLPA, with a molecular weight of 62,184 Da, was isolated and characterized by GC-MS and NMR analysis. It mainly consists of galacturonic acid (GalA), galactose (Gal), rhamnose (Rha), and arabinose (Ara), with a linear main chain of galacturonic acid (homogalacturonan, HG) inserted by part of rhamnose galacturonic acid (rhamnogalacturonan, RG), attaching with arabinogalactan (AG) branches at RG-I. Both in the LPS-induced A549 cell model and LPS-induced pneumonia mouse model, OGY-LLPA demonstrated strong anti-inflammatory effects, even comparable to DEX, indicating its potential as an anti-pneumonia candidate agent. Moreover, low-dose OGY-LLPA alleviated LPS-induced pulmonary inflammation by inhibiting the NF-κB signaling pathway. Overall, these findings could not only contribute to the utilization of Onosma glomeratum Y. L. Liu., but also provides a theoretical basis for the treatment of inflammation-related diseases.


Assuntos
Ácidos Hexurônicos , NF-kappa B , Pneumonia , Camundongos , Animais , Lipopolissacarídeos , Ramnose , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/análise , Transdução de Sinais , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico
5.
Drug Dev Ind Pharm ; 50(1): 45-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095592

RESUMO

OBJECTIVE: Florfenicol(FF) is an excellent veterinary antibiotic, limited by poor solubility and poor bioavailability. SIGNIFICANCE: Here in, we aimed to explore the applicability of fast disintegrating tablets compressed from Florfenicol-loaded solid dispersions (FF-SD-FDTs) to improve the dissolution rate and oral bioavailability of Florfenicol. METHODS: Utilizing selecting appropriate preparation methods and carriers, the solid dispersions of Florfenicol (FF-SDs) were prepared by solvent evaporation and the fast disintegrating tablets (FF-SD-FDTs) were prepared by the direct compression (DC) method. RESULTS: The tablet properties including hardness, friability, disintegration time, weight variation, etc. all met the specifications of Chinese Veterinary Pharmacopeia(CVP). FF-SD-FDTs significantly improved drug dissolution and dispersion of FF in vitro compared to florfenicol conventional tablets (FF-CTs). A pharmacokinetics study in German shepherd dogs proved the AUC0-∞ and Cmax values of FF-SD-FDTs are 1.38 and 1.38 times more than FF-CTs, respectively. CONCLUSIONS: Overall, it can be concluded that FF-SD-FDTs with excellent disintegration and dissolution properties were successfully produced, which greatly improved the oral bioavailability of the poorly soluble drug FF, and the study provided a new idea for a broader role of FF in pet clinics.


Assuntos
Tecnologia , Tianfenicol/análogos & derivados , Animais , Cães , Disponibilidade Biológica , Solubilidade , Liberação Controlada de Fármacos , Comprimidos
6.
Int J Nanomedicine ; 18: 7403-7415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090363

RESUMO

Introduction: Biofilm is highly resistant to antibiotics due to its heterogeneity and is implicated in over 80% of chronic infections; these refractory and relapse-prone infections pose a huge medical burden. Methods: In this study, rhamnolipid (RHL), a biosurfactant with antibiofilm activity, was loaded with the antibiotic azithromycin (AZI) to construct a stable nanomicelle (AZI@RHL) that promotes Staphylococcus aureus (S. aureus) biofilm disruption. Results: AZI@RHL micelles made a destruction in biofilms. The biofilm biomasses were reduced significantly by 48.2% (P<0.05), and the main components polysaccharides and proteins were reduced by 47.5% and 36.8%, respectively. These decreases were about 3.1 (15.9%), 7.3 (6.5%), and 1.9 (19.5%) times higher compared with those reported for free AZI. The disruption of biofilm structure was observed under a confocal microscope with fluorescent labeling, and 48.2% of the cells in the biofilm were killed. By contrast, the clearance rates of cells were only 20% and 17% when treated alone with blank micelles or free AZI. Biofilm formation was inhibited up to 92% in the AZI@RHL group due to effects on cell auto-aggregation and eDNA release. The rates for the other groups were significantly lower, with only 27.7% for the RHL group and 12% for the AZI group (P<0.05). The low cell survival and great formation inhibition could reduce biofilm recolonization and re-formation. Conclusion: The antibiofilm efficacy of rhamnolipid was improved through micellar nanoparticle effects when loading azithromycin. AZI@RHL provides a one-step solution that covers biofilm disruption, bacteria inactivation, recolonization avoidance, and biofilm re-formation inhibition.


Assuntos
Azitromicina , Infecções Estafilocócicas , Humanos , Azitromicina/farmacologia , Staphylococcus aureus , Micelas , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Biofilmes , Testes de Sensibilidade Microbiana
7.
Poult Sci ; 102(11): 102936, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708764

RESUMO

The aim of this study was to investigate the effects of adding tea tree oil (TTO) in the basal diet on growth performance, immune function, and intestinal function in broilers. This study utilized 1,650 one-day-old broilers with good health and similar body weight. Subjects were randomized into 5 groups with 6 replicates each: the control group (CON, basal diet), positive control group (PCG, basal diet + 100 mg/kg oregano oil in diet), low-dose TTO group (TTO-L, 50 mg/kg TTO added in the basal diet), medium-dose TTO group (TTO-M, 100 mg/kg TTO added in the basal diet), and high-dose TTO group (TTO-H, 200 mg/kg TTO added in the basal diet). The whole test period lasted 28 d. The results showed that the broilers fed with TTO supplemented diet had significantly higher body weight and average daily gain (ADG) (P = 0.013), and had a lower feed conversion ratio (F/G) (P = 0.010) throughout the trial period. The index of thymus in TTO-M increased significantly compared to CON (P = 0.015) on d 28. On d 14 and 28, C3, IFN-γ, TNF-α, and IL-2 levels in TTO-L serum were significantly increased (P < 0.001); the 3 test groups supplemented with TTO had significantly higher titers of avian influenza H9 subtype in their serum (P < 0.05). Tea tree oil supplement in the diet also had a positive and significant effect on the intestinal morphology of broilers throughout the experiment (P < 0.05). These results indicate that TTO has the ability to promote broiler growth, regulate immunity, and improve intestinal morphology. The proposed dosage of adding 50 mg/kg in broiler basal diets provides a theoretical basis for its subsequent use in livestock feeds.


Assuntos
Óleo de Melaleuca , Animais , Óleo de Melaleuca/farmacologia , Galinhas/fisiologia , Suplementos Nutricionais , Dieta/veterinária , Peso Corporal , Imunidade , Ração Animal/análise
8.
Animals (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685034

RESUMO

The aim of this study was to explore the association between antimicrobial resistance, ESBL genes, and virulence genes of Salmonella isolates. From 2019 to 2021, a total of 117 Salmonella isolates were obtained from symptomatic chickens in Sichuan Province, China. The strains were tested for antimicrobial resistance and the presence of ESBL according to the Clinical and Laboratory Standards Institute (CLSI) instructions. The presence of ESBL genes and genes for virulence was determined using Polymerase Chain Reaction (PCR). In addition, Multilocus Sequence Typing (MLST) was applied to confirm the molecular genotyping. Moreover, the mechanism of ESBL and virulence gene transfer and the relationships between the resistance phenotype, ESBL genes, and virulence genes were explored. The isolates exhibited different frequencies of resistance to antibiotics (resistance rates ranged from 21.37% to 97.44%), whereas 68.38% and 41.03% of isolates were multi-drug resistance (MDR) and ESBL-producers, respectively. In the PCR analysis, blaCTX-M was the most prevalent ESBL genotype (73.42%, 58/79), and blaCTX-M-55 showed the most significant effect on the resistance to cephalosporins as tested by logistic regression analysis. Isolates showed a high carriage rate of invA, avrA, sopB, sopE, ssaQ, spvR, spvB, spvC, stn, and bcfC (ranged from 51.28% to 100%). MLST analysis revealed that the 117 isolates were divided into 11 types, mainly ST92, ST11, and ST3717. Of 48 ESBL-producers, 21 transconjugants were successfully obtained by conjugation. Furthermore, ESBL and spv virulence genes were obtained simultaneously in 15 transconjugants. These results highlighted that Salmonella isolates were common carriers of ESBLs and multiple virulence genes. Horizontal transfer played a key role in disseminating antimicrobial resistance and pathogenesis. Therefore, it is necessary to continuously monitor the use of antimicrobials and the prevalence of AMR and virulence in Salmonella from food animals and to improve the antibiotic stewardship for salmonellosis.

9.
RSC Adv ; 13(27): 18323-18327, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37333791

RESUMO

MXene monolayers have received increasing attention due to their unique properties, particularly their high conductivity, which shows great potential in thermoelectric materials. In this paper, we present a theoretical study of the thermoelectric properties of X3N2O2 (X = Hf, Zr) MXene monolayers, taking electron-phonon coupling into consideration. Owing to their similar geometrical structures, electronic band structures, and phonon dispersions, X3N2O2 MXene monolayers exhibit homogeneous electron and phonon transport properties. The conduction band shows multi-valley characteristics which leads to better n-type electron transport properties than p-type ones. The maximum values of the n-type power factor can reach 32 µW cm-1 K-2 for the Hf3N2O2 monolayer and 23 µW cm-1 K-2 for the Zr3N2O2 monolayer. In terms of phonon transport, the lattice thermal conductivity for the Zr3N2O2 monolayer is higher than that for the Hf3N2O2 monolayer, due to larger phonon group velocity. Our results show that the Hf3N2O2 monolayer is more suitable for thermoelectric materials than the Zr3N2O2 monolayer, with optimal n-type thermoelectric figure of merit (ZT) values of 0.36 and 0.15 at 700 K, respectively. These findings may be useful for the development of wearable thermoelectric devices and sensor applications based on X3N2O2 MXene monolayers.

10.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375405

RESUMO

The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate the effect of TMP on liver injury induced by acute fluorosis. A total of 60 1-month-old male ICR mice were selected. All mice were randomly divided into five groups: a control (K) group, a model (F) group, a low-dose (LT) group, a medium-dose (MT) group, and a high-dose (HT) group. The control and model groups were given distilled water, while 40 mg/kg (LT), 80 mg/kg (MT), or 160 mg/kg (HT) of TMP was fed by gavage for two weeks, with a maximum gavage volume for the mice of 0.2 mL/10 g/d. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study showed that, compared with the model group, TMP alleviated the pathological changes in the liver induced by the fluoride and improved the ultrastructure of liver cells; TMP significantly decreased the levels of ALT, AST, and MDA (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection showed that TMP significantly increased the mRNA expression levels of Nrf2, HO-1, CAT, GSH-Px, and SOD in the liver compared with the model group (p < 0.05). In conclusion, TMP can inhibit oxidative stress by activating the Nrf2 pathway and alleviate the liver injury induced by fluoride.


Assuntos
Fluoretos , Hepatopatias , Masculino , Camundongos , Animais , Fluoretos/efeitos adversos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatias/metabolismo , Fígado , Estresse Oxidativo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo
11.
Bioorg Chem ; 138: 106643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329815

RESUMO

1,4-naphthoquinones are the most widespread naphthoquinone compounds. Recently, many 1,4-naphthoquinone glycosides with different structural features have been obtained from both nature and synthesis, which has led to an increasing variety of naphthoquinone glycosides. In this paper, the structure variety and biological activity in recent 20 years are reviewed, and classified them according to the source and structure characteristics. Meanwhile the synthetic methods of O-, S-, C- and N-naphthoquinone glycosides and their structure activity relationships are also described. It was referred that the presence of polar groups of C2 and C5 and non-polar groups attached to C3 on the naphthoquinone ring are beneficial for their biological activities. It will provide more comprehensive literature resources for the future research of 1, 4-naphthoquinone glycosides and lay a theoretical foundation.


Assuntos
Glicosídeos , Naftoquinonas , Glicosídeos/farmacologia , Glicosídeos/química , Relação Estrutura-Atividade , Naftoquinonas/farmacologia , Naftoquinonas/química
12.
Ecotoxicol Environ Saf ; 254: 114704, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898311

RESUMO

Studies on the general toxicity of copper nanoparticles (Cu NPs) have been conducted extensively, but their effects on reproductive toxicity remain unclear. In this study, we evaluated the toxic effect of Cu NPs on pregnant rats and their litter. The comparative in vivo toxicity of Cu ions, Cu NPs, and Cu microparticles (MPs) was studied in a 17-day repeated oral-dose experiment at the doses of 60, 120, and 180 mg/kg/day in pregnant rats. The pregnancy rate, mean live litter size, and number of dams decreased when exposed to Cu NPs. Moreover, Cu NPs caused a dose-dependent increase in ovarian Cu levels. The metabolomics results showed that Cu NPs caused reproductive dysfunction by altering sex hormones. In addition, in vivo and in vitro experiments showed that the ovarian cytochrome P450 enzymes (CYP450), responsible for hormone production, were significantly upregulated, whereas the enzymes responsible for hormone metabolism were significantly inhibited, resulting in a metabolic imbalance in some ovarian hormones. Furthermore, the results revealed that the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways significantly participated in the regulation of ovarian CYP enzyme expression. Overall, the results of the in vivo and in vitro toxicity experiments with Cu ions, Cu NPs, and Cu MPs suggested that toxicity from nanoscale Cu particles poses a more serious reproductive threat than microscale Cu as Cu NPs could directly damage the ovary and affect the metabolism of ovarian hormones.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Gravidez , Ratos , Feminino , Animais , Cobre/toxicidade , Ratos Sprague-Dawley , Nanopartículas Metálicas/toxicidade , Ovário/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hormônios , Íons
13.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838708

RESUMO

Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers.


Assuntos
Lipopolissacarídeos , Microbiota , Animais , Lipopolissacarídeos/farmacologia , Galinhas/metabolismo , Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Imunoglobulina A Secretora , Ração Animal/análise
14.
Bioorg Chem ; 132: 106342, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36621157

RESUMO

The privileged structure binds to multiple receptors with high affinity, which is helpful to the development of new bioactive compounds. Indole is classified as a privileged structure, which may be one of the most important structural categories in drug discovery. As a special subset of indole compounds, 2-phenylindole seems to be one of most promising forerunners of drug development. In this paper, 106 articles were referenced to review the structural changes, biological activities and structure-activity relationship of compounds in recent 20 years, and classified them according to their pharmacological activities, from several aspects, including anticancer, antibacterial, anti-inflammatory, analgesic, antiviral, anti-parasite, the biological activities target to central nervous system, et al. It also points out the importance of artificial intelligence (AI) technology in discovery of new 2-phenylindole compounds in a broader prospect. This review will provide some ideas for researchers to develop new indole drugs.


Assuntos
Antibacterianos , Inteligência Artificial , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Indóis/farmacologia , Indóis/química , Anti-Inflamatórios não Esteroides/farmacologia
15.
Front Vet Sci ; 9: 942189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958302

RESUMO

Cadmium (Cd) is known as a highly toxic heavy metal and has been reported to induce hepatotoxicity in animals. Nano-selenium (NSe) is an antioxidant that plays many biological roles such as oxidative stress alleviation. The purpose of this study is to explore the mechanism of action by which NSe inhibits Cd-induced hepatic toxicity and oxidative stress. Sixty eight-week-old male Kunming mice were randomly divided into four groups (15 mice per group). The control group and cadmium groups received distilled water, whereas the sodium-selenite group received 0.2 mg/kg SSe and the NSe group received 0.2 mg/kg NSe intragastrically for 2 weeks. On the last day, all the other groups were treated with Cd (126 mg/kg) except for the control group. The results obtained in this study showed that NSe alleviated Cd-induced hepatic pathological changes. Furthermore, NSe reduced the activities of ALT and AST as well as the content of MDA, while elevated the activities of T-AOC, T-SOD and GSH (P < 0.05). In addition, the NSe group significantly increased mRNA expressions of Nrf2 pathway related molecules (Nrf2, HO-1, NQO-1, GST, GSH-Px, CAT and SOD) compared to the Cd group (P < 0.05). In conclusion, NSe shows its potentiality to reduce Cd-induced liver injury by inhibiting oxidative stress and activating the Nrf2 pathway.

16.
Oxid Med Cell Longev ; 2022: 6821170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720186

RESUMO

Chondrocytes play an essential role in maintaining the structure and function of articular cartilage. Oxidative stress occurred in chondrocytes accelerates cell senescence and death, which contributes to the development of osteoarthritis (OA). Patchouli alcohol (PA), a kind of sesquiterpene in Pogostemon cablin, processes multiple bioactivities in treatment of many diseases. However, its effects of antisenescence and antioxidation on chondrocytes in a D-gal-induced aging mice model are still obscure. In this study, we found that PA treatment could ameliorate the degradation of cartilage extracellular matrix (ECM) in a D-gal-induced aging mice model. Further analyses through the immunofluorescent staining and western blot revealed that PA inhibited D-gal-induced chondrocyte senescence via the activation of antioxidative system. Besides, the damage caused by D-gal could not be recovered with PA treatment in Nrf2-silencing chondrocytes. In addition, molecular docking analysis between PA and Keap1 further suggested that the mechanism of PA's antisenescence and antioxidation was attributed to the activation of Nrf2/HO-1 pathway. Therefore, our results demonstrated that PA was a promising candidate for preventing the quality loss of aging cartilage through inhibiting oxidative stress-mediated senescence in chondrocytes.


Assuntos
Cartilagem Articular , Sesquiterpenos , Animais , Camundongos , Envelhecimento , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Sesquiterpenos/farmacologia
17.
Acta Biomater ; 146: 357-369, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577045

RESUMO

Photodynamic therapy (PDT) is an emerging therapeutic approach that can inhibit tumor growth by destroying local tumors and activating systemic antitumor immune responses. However, PDT can be ineffective because of photosensitizer aggregation, tumor-induced dendritic cells (DCS) dysfunction and PDT-mediated immunosuppression. Therefore, we designed chondroitin sulfate-based prodrug nanoparticles for the co-delivery of the photosensitizer chlorin e6 (Ce6) and retinoic acid (RA), which can reduce PDT-mediated immunosuppression by disrupting the Golgi apparatus and blocking the production of immunosuppressive cytokines. Moreover, CpG oligodeoxynucleotide was combined as immunoadjuvant to promote the maturation of DCs. As expected, the strategy of Golgi apparatus targeting immunotherapy combined PDT was confirmed to relieve PDT-induced immunosuppression, showed excellent PDT antitumor efficacy in B16F10-subcutaneous bearing mice model. Thus, our finding offers a promising approach for photodynamic immunotherapy of advanced cancers. STATEMENT OF SIGNIFICANCE: Golgi apparatus has been shown to be a potential target of immunosuppression for producing several immunosuppressive cytokines. In this work, a Golgi apparatus-targeted prodrug nanoparticle was developed to enhance the immune response in photodynamic immunotherapy. The nanoparticle can target and disrupt the Golgi apparatus in tumor cells, which reduced PDT-mediated immunosuppression by blocking the production of immunosuppressive cytokines. This work provides an effective strategy of PDT in combination with the Golgi apparatus-targeted nanovesicle for enhanced cancer therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina , Citocinas , Complexo de Golgi , Fatores Imunológicos , Imunoterapia , Camundongos , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Pró-Fármacos/farmacologia
18.
J Appl Microbiol ; 133(3): 1273-1287, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35621701

RESUMO

Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analysed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to a clinical setting.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Biofilmes , Humanos
19.
Toxins (Basel) ; 14(3)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35324724

RESUMO

Lipopolysaccharide (LPS) is an endotoxin that can cause an imbalance between the oxidation and antioxidant defense systems and then induces hepatic damages. Ferulic acid (FA) has multiple biological functions including antibacterial and antioxidant activities; however, the effect of FA on lipopolysaccharide-induced hepatic injury remains unknown. The purpose of this study was to investigate the mechanism of action of dietary Ferulic acid against Lipopolysaccharide-induced hepatic injuries in Tianfu broiler chickens. The results showed that supplementation of FA in daily feed increased body weight (BW) and decreased the feed conversion ratio (FCR) in LPS treatment broilers significantly (p < 0.05). Additionally, supplement of FA alleviated histological changes and apoptosis of hepatocytes in LPS treatment broilers. Supplement of FA significantly decreases the activities of ROS. Interestingly, the levels of antioxidant parameters including total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and glutathione (GSH) in LPS group were significantly increased by the FA supplementation (p < 0.05). Nevertheless, administration of LPS to broilers decreased the expressions of Nrf2, NQO1, SOD, GSH-Px, CAT and Bcl-2, whereas it increased the expressions of Bax and Caspase-3 (p < 0.05). Moreover, the expressions of Nrf2, NQO1, SOD, CAT, Bcl-2 were significantly upregulated and Caspase-3 were significantly downregulated in the FL group when compared to LPS group (p < 0.05). In conclusion, supplementation of FA in daily feed improves growth performance and alleviates LPS-induced oxidative stress, histopathologic changes, and apoptosis of hepatocytes in Tianfu broilers.


Assuntos
Galinhas , Lipopolissacarídeos , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Ácidos Cumáricos , Dieta/veterinária , Suplementos Nutricionais , Glutationa/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
20.
Phytomedicine ; 99: 154035, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35286935

RESUMO

BACKGROUND: The emergence of antibiotic resistance over the past decade has made the treatment of Staphylococcus aureus infection difficult. Burn wounds infected with methicillin-resistant S. aureus (MRSA) can cause mortality in animals. Shikonin (SH) has been reported to possess antimicrobial and anti-inflammatory properties, and is also responsible for the process of wound healing. However, the pharmacological mechanism of its wound healing process remains poorly comprehended, hence the probable mechanism deserves further investigation. PURPOSE: The current study was designed to develop a novel SH-liposome with improved anti-MRSA effect and to detect its beneficial wound healing effects. STUDY DESIGN: In vitro antibacterial tests and in vivo infected wound healing test were conducted. METHODS: SH-liposome was produced by the film formation method, and the characteristics were measured using a laser particle size analyzer, transmission electron microscopy, and the dialysis method. Additionally, in vitro antibacterial tests were conducted to investigate the antibacterial effects and the relative mechanism of SH-liposome. Furthermore, the therapeutic effects and bioactivity of SH-liposome in MRSA infected burn wounds were investigated in rats. Sixty-four male Sprague Dawley rats (250 ± 10 g) were randomly divided into four groups, including Group I (control group); Group II (model group); Group III (SH-liposome group) and Group IV (Arnebia oil® group), and the drug treatments were applied topically twice daily for 21 days. Further, full thickness skin biopsies at different periods were collected aseptically to evaluate tissue cytokines, recognize flora, observe histopathological changes, and determine the mechanism underlying the wound healing effects of SH-liposome. The data were analyzed via one-way analysis of variance (ANOVA) and Duncan's multiple range test. RESULTS: The results showed that SH-liposome was successful with a drug load of 4.6 ± 0.17%. Moreover, SH-liposome showed a sustained-release behavior and improved antibacterial ability in a dose-dependent manner. For the possible antibacterial mechanism, we observed that SH-liposome achieved antibacterial activity by damaging the integrity of bacterial cell wall and membrane to further disturb the physiological activities of S. aureus. In addition, SH-liposome facilitated wound healing by inhibiting bacterial activities to control infection, regulating the I-κBα/NFκB-p65 pathway to alleviate inflammation, and directly promoting repair in burn wounds. CONCLUSION: In conclusion, SH-liposome showed an antibacterial effect against S. aureus, promoted effective healing of infected burn wounds; hence, it could be used as an alternative therapy for drug-resistant infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...