Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Divers ; 46(3): 416-420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38798727

RESUMO

The number of trichomes significantly increased in CRISPR/Cas9-edited BrrTCP4b turnip (Brassica rapa var. rapa) plants. However, the underlying molecular mechanism remains to be uncovered. In this study, we performed the Y2H screen using BrrTCP4b as the bait, which unveiled an interaction between BrrTCP4b and BrrTTG1, a pivotal WD40-repeat protein transcription factor in the MYB-bHLH-WD40 (MBW) complex. This physical interaction was further validated through bimolecular luciferase complementation and co-immunoprecipitation. Furthermore, it was found that the interaction between BrrTCP4b and BrrTTG1 could inhibit the activity of MBW complex, resulting in decreased expression of BrrGL2, a positive regulator of trichomes development. In contrast, AtTCP4 is known to regulate trichomes development by interacting with AtGL3 in Arabidopsis thaliana. Overall, this study revealed that BrrTCP4b is involved in trichome development by interacting with BrrTTG1 in turnip, indicating a divergence from the mechanisms observed in model plant A. thaliana. The findings contribute to our understanding of the regulatory mechanisms governing trichome development in the non-model plants turnip.

2.
Genes (Basel) ; 13(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36011392

RESUMO

The WUSCHEL-related homeobox (WOX) proteins are a class of transcription factors exclusive to plants. They can promote cell division or inhibit stem cell differentiation to regulate plant growth and development. However, the WOX transcription factor genes in the monocotyledon Dendrobium catenatum Lindl. remain relatively uncharacterized. Specifically, the effects of phytohormones on their expression levels are unclear. In this study, we identified and analyzed 10 candidate DcaWOX transcription factor genes in D. catenatum. The DcaWOX family was divided into the modern/WUS, intermediate, and ancient clades. The subcellular localization analysis detected DcaWOX-GFP fusion proteins in the tobacco epidermal leaf cell nucleus. In DcaWOX, members of the WUS clade with the WUS-box motif can significantly activate the expression of TPL in vivo, while members of the intermediate and ancient clades cannot. The expression of the DcaWOX genes varied among the examined tissues. Moreover, the DcaWOX expression patterns were differentially affected by the phytohormone treatments, with differences detected even between homologs of the same gene. Furthermore, the gene expression patterns were consistent with the predicted cis-acting elements in the promoters. The above results suggest that DcaWOX may have an important role in its growth and development and resistance to stress. The results of this comprehensive investigation of the DcaWOX gene family provide the basis for future studies on the roles of WOX genes in D. catenatum.


Assuntos
Dendrobium , Regulação da Expressão Gênica de Plantas , Dendrobium/genética , Família Multigênica , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...