Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(21): 8031-8037, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817567

RESUMO

The selective formation of C-C bonds, coupled with effective removal of oxygen, plays a crucial role in the process of upgrading biomass-derived oxygenates into fuels and chemicals. However, co-feeding reactants with water is sometimes necessary to assist binding sites in catalytic reactions, thereby achieving desirable performance. Here, we report the design of a CeSnBeta catalyst featuring dual Lewis acidic sites for the efficient production of isobutene from acetone via C-C coupling followed by deoxygenation. By incorporating Ce species onto SnBeta, which was synthesized through liquid-phase grafting of dealuminated Beta, we created confined dual Lewis acidic centers within Beta zeolites. The cooperative action of Ce species and framework Sn sites within this confined environment enabled selective catalysis of the acetone-to-isobutene cascade reactions, showcasing enhanced stability even without the presence of water.

2.
Science ; 381(6658): 660-666, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561862

RESUMO

Waste plastics are an abundant feedstock for the production of renewable chemicals. Pyrolysis of waste plastics produces pyrolysis oils with high concentrations of olefins (>50 weight %). The traditional petrochemical industry uses several energy-intensive steps to produce olefins from fossil feedstocks such as naphtha, natural gas, and crude oil. In this work, we demonstrate that pyrolysis oil can be used to produce aldehydes through hydroformylation, taking advantage of the olefin functionality. These aldehydes can then be reduced to mono- and dialcohols, oxidized to mono- and dicarboxylic acids, or aminated to mono- and diamines by using homogeneous and heterogeneous catalysis. This route produces high-value oxygenated chemicals from low-value postconsumer recycled polyethylene. We project that the chemicals produced by this route could lower greenhouse gas emissions ~60% compared with their production through petroleum feedstocks.

3.
Nat Commun ; 14(1): 3944, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402751

RESUMO

Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe (<50%) in hydrotreating of diphenyl ether (DPE, modelling the strongest C-O linkage in lignin) and enhanced ethene selectivity (>90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.

4.
JACS Au ; 1(9): 1471-1487, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34604856

RESUMO

Water plays pivotal roles in tailoring reaction pathways in many important reactions, including cascade C-C bond formation and oxygen elimination. Herein, a kinetic study combined with complementary analyses (DRIFTS, isotopic study, 1H solid-state magic angle spinning nuclear magnetic resonance) and density functional theory (DFT) calculations are performed to elucidate the roles of water in cascade acetone-to-isobutene reactions on a Zn x Zr y O z mixed metal oxide with balanced Lewis acid-base pairs. Our results reveal that the reaction follows the acetone-diacetone alcohol-isobutene pathway. Isobutene is produced through an intramolecular rearrangement of the eight-membered ring intermediate formed via the adsorption of diacetone alcohol on the Lewis acid-base pairs in the presence of cofed water. OH adspecies, formed by the dissociative adsorption of water on the catalyst surface, were found to distort diacetone alcohol's hydroxyl functional group toward its carbonyl functional group and facilitate the intramolecular rearrangement of diacetone alcohol to form isobutene. In the absence of water, diacetone alcohol binds strongly to the Lewis acid site, e.g., at a Zr4+ site, via its carbonyl functional group, leading to its dramatic structural distortion and further dehydration reaction to form mesityl oxide as well as subsequent polymerization reactions and the formation of coke. The present results provide insights into the cooperative roles of water and Lewis acid-base pairs in catalytic upgrading of biomass to fuels and chemicals.

5.
ACS Appl Mater Interfaces ; 13(44): 52125-52133, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387989

RESUMO

Ti3C2Tx MXene is a member of the recently discovered two-dimensional early transition metal carbide and nitride family of MXenes with potential applications in energy storage and heterogeneous catalysis at elevated temperatures. Here, we apply a suite of in situ techniques to probe Ti3C2Tx MXene's thermal evolutions, including in situ X-ray diffraction (XRD), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and integrated thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS). In light of this set of in situ investigations, we find heterogeneity in the layering of Ti3C2Tx MXene revealed only at higher temperatures. Our findings present behavior up to 600 °C, particularly interlayer water and -OH surface end-capping groups. In one group of layers, their interlayer spacing shrinks as water deintercalates, but the other group of layers unexpectedly shows no change in the interlayer spacing. This is strong evidence that intercalants act as guest pillaring agents in the latter layering group, which stabilize these layers at higher temperatures while keeping the interlayer space accessible.

6.
Chem Sci ; 11(23): 5874-5880, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32874508

RESUMO

Development of inexpensive sulfur-free catalysts for selective hydrogenolysis of the C-O bond in phenolics (i.e., selective removal of oxygen without aromatic ring saturation) under liquid-phase conditions is highly challenging. Here, we report an efficient approach to engineer earth-abundant Fe catalysts with a graphene overlayer and alkali metal (i.e., Cs), which produces arenes with 100% selectivity from liquid-phase hydrodeoxygenation (HDO) of phenolics with high durability. In particular, we report that a thin (a few layers) surface graphene overlayer can be engineered on metallic Fe particles (G@Fe) by a controlled surface reaction of a carbonaceous compound, which prevents the iron surface from oxidation by hydroxyls or water produced during HDO reaction. More importantly, further tailoring the surface electronic properties of G@Fe with the addition of cesium, creating a Cs-G@Fe composite catalyst in contrast to a deactivated Cs@Fe one, promotes the selective C-O bond cleavage by inhibiting the tautomerization, a pathway that is very facile under liquid-phase conditions. The current study could open a general approach to rational design of highly efficient catalysts for HDO of phenolics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...